On p-permutation equivalences between direct products of blocks

Deniz Yılmaz

Abstract

We extend the notion of a p-permutation equivalence to an equivalence between direct products of block algebras. We prove that a p-permutation equivalence between direct products of blocks gives a bijection between the factors and induces a p-permutation equivalence between corresponding blocks.

Keywords: block, p-permutation equivalence, trivial source modules.
MSC2020: 20C20, 19A22.

1 Introduction

One of the main themes in representation theory of finite groups is to study equivalences between block algebras. Various authors have defined different notions of equivalences, such as Puig equivalence [P99], splendid Rickard equivalence [R96], derived equivalence, isotypy, perfect isometry [Br90], p-permutation equivalence [BoX08],[BoP20], and functorial equivalence [BY22]. Our aim in this paper is to extend the notion of a p-permutation equivalence to an equivalence between direct products of blocks.

Let G and H be finite groups. Let $p>0$ be a prime and let $(\mathbb{K}, \mathcal{O}, k)$ denote a p-modular system where \mathcal{O} is a complete discrete valuation ring with residue field k of characteristic p and field of fractions \mathbb{K} of characteristic 0 . Suppose that \mathcal{O} contains a root of unity whose order is equal to the exponent of $G \times H$.

Let A be a sum of blocks of $\mathcal{O} G$ and B a sum of blocks of $\mathcal{O H}$. Let $T^{\Delta}(A, B)$ denote the Grothendieck group with respect to split short exact sequences of p-permutation (A, B)-bimodules whose indecomposable summands have twisted diagonal vertices when regarded as $\mathcal{O}[G \times H]$ modules. In [BoP20], Boltje and Perepelitsky define a p-permutation equivalence between A and B as an element $\gamma \in T^{\Delta}(A, B)$ such that

$$
\gamma \cdot{ }_{H} \gamma^{\circ}=[A] \in T^{\Delta}(A, A) \quad \text { and } \quad \gamma^{\circ} \cdot{ }_{G} \gamma=[B] \in T^{\Delta}(B, B)
$$

where γ° is the \mathcal{O}-dual of γ and where $\cdot{ }_{H}$ is tensor product over $\mathcal{O} H$. Among many other interesting and important properties of p-permutation equivalences, they proved that if γ is a p-permutation equivalence between A and B, then there is a bijection between the block summands of A and B and γ induces a p-permutation equivalence between the corresponding blocks, see [BoP20, Theorem 10.10]. We show that a similar phenomenon holds for p-permutation equivalences between direct products of blocks.
1.1 Definition Let $A_{1} \times \cdots \times A_{n}, B_{1} \times \cdots \times B_{m}$ and $C_{1} \times \cdots \times C_{l}$ be direct products of block algebras of finite groups. Let $\gamma=\left(\gamma_{i j}\right)$ and $\gamma^{\prime}=\left(\gamma_{j k}^{\prime}\right)$ be matrices with entries $\gamma_{i j} \in T^{\Delta}\left(A_{i}, B_{j}\right)$ and $\gamma_{j k}^{\prime}=T^{\Delta}\left(B_{j}, C_{k}\right)$. We denote by $\gamma \circ \gamma^{\prime}$ the product of the matrices γ and γ^{\prime}. More precisely,

$$
\left(\gamma \circ \gamma^{\prime}\right)_{i, k}=\sum_{j=1}^{m} \gamma_{i j} \cdot H_{j} \gamma_{j k}^{\prime} \in T^{\Delta}\left(A_{i}, C_{k}\right)
$$

1.2 Definition Let G_{1}, \cdots, G_{n} and H_{1}, \cdots, H_{m} be finite groups. Let $A_{i} \in \operatorname{Bl}\left(\mathcal{O} G_{i}\right)$ and $B_{j} \in$ $\mathrm{Bl}\left(\mathcal{O} H_{j}\right)$ be block algebras for $i=1, \cdots, n$ and $j=1, \cdots, m$. A p-permutation equivalence between the direct product algebras $A_{1} \times \cdots \times A_{n}$ and $B_{1} \times \cdots \times B_{m}$ is a matrix $\gamma=\left(\gamma_{i j}\right)$ where $\gamma_{i j} \in T^{\Delta}\left(A_{i}, B_{j}\right)$ such that

$$
\gamma \circ \gamma^{\circ}=\left(\begin{array}{cccc}
{\left[A_{1}\right]} & 0 & \cdots & 0 \\
0 & {\left[A_{2}\right]} & 0 \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 \cdots & {\left[A_{n}\right]}
\end{array}\right) \quad \text { and } \quad \gamma^{\circ} \circ \gamma=\left(\begin{array}{cccc}
{\left[B_{1}\right]} & 0 & \cdots & 0 \\
0 & {\left[B_{2}\right]} & 0 \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 \cdots & {\left[B_{m}\right]}
\end{array}\right)
$$

where $\gamma^{\circ}=\left(\left(\gamma_{i, j}^{\circ}\right)_{i j}\right)^{t}$.
Our main result is the following.
1.3 Theorem Let G_{1}, \cdots, G_{n} and H_{1}, \cdots, H_{m} be finite groups. Let $A_{i} \in \operatorname{Bl}\left(\mathcal{O} G_{i}\right)$ and $B_{j} \in$ $\operatorname{Bl}\left(\mathcal{O} H_{j}\right)$ be block algebras for $i=1, \cdots, n$ and $j=1, \cdots, m$. Assume that \mathcal{O} contains a root of unity of order the exponent of G_{i} and H_{j} for each i and j. Let $\gamma=\left(\gamma_{i j}\right)$ be a p-permutation equivalence between the direct products $A_{1} \times \cdots \times A_{n}$ and $B_{1} \times \cdots \times B_{m}$ of block algebras. Then $n=m$ and in each row and in each column of γ, there exists precisely one non-zero element. Moreover, if $\gamma_{i j}$ is the non-zero element in the i-th row and j-th coloumn, then $\gamma_{i j}$ is a p-permutation equivalence between A_{i} and B_{j}.

2 The proof of the main theorem

Throughout $G, G_{1}, \cdots, G_{n}, H, H_{1}, \cdots, H_{m}$ denote finite groups. Also, $(\mathbb{K}, \mathcal{O}, k)$ denotes a p modular system where \mathcal{O} is a complete discrete valuation ring with residue field k of characteristic p and field of fractions \mathbb{K} of characteristic 0 . We suppose that \mathcal{O} contains a root of unity of order the exponent of G, G_{i}, H and H_{j} for all i and j. We follow the proof of [BoP20, Theorem 10.10] closely.
2.1 We denote by $R(\mathbb{K} G)$ and $R(k G)$ the Grothendieck groups with respect to short exact sequences of $\mathbb{K} G$-modules and $k G$-modules, respectively, and by $T(\mathcal{O} G)$ and $T(k G)$ the Grothendieck groups with respect to split short exact sequences of p-permutation $\mathcal{O} G$-modules and p-permutation $k G$-modules, respectively.

We denote by $-^{*}$ the anti-involution $g \mapsto g^{-1}$ of any group algebra of a group G. If A is a block of $\mathcal{O} G$ and B is a block of $\mathcal{O} H$, then we can regard any (A, B)-bimodule M as an $A \otimes B^{*}$-module via the isomorphism $\mathcal{O}(G \times H) \cong \mathcal{O} G \otimes_{\mathcal{O}} \mathcal{O} H$. We set $R(\mathbb{K} G, \mathbb{K} H):=R(\mathbb{K}[G \times H])$ and similarly define $R(A, B), T(A, B)$ etc.

Let $P \leqslant G$ and $Q \leqslant H$ be subgroups and $\phi: Q \rightarrow P$ a group isomorphism. The subgroup $\Delta(P, \phi, Q):=\{(\phi(q), q) \mid q \in Q\} \leqslant G \times H$ is called twisted diagonal. We denote by $T^{\Delta}(A, B)$ the Grothendieck group with respect to split short exact sequences of p-permutation (A, B)-bimodules whose indecomposable summands have twisted diagonal vertices when regarded as $\mathcal{O}[G \times H]$ modules.
2.2 Let $\Delta(P, \phi, Q) \leqslant G \times H$ be a p-subgroup. Following the notation in [BoP20, 10.1], for an element $\gamma \in T^{\Delta}(\mathcal{O} G, \mathcal{O} H)$, we write $\bar{\gamma}(P, \phi, Q)$ for the Brauer construction $\gamma(\Delta(P, \phi, Q)) \in$ $T\left(k N_{G \times H}(\Delta(P, \phi, Q))\right.$. Set $N:=N_{G \times H}(\Delta(P, \phi, Q)$. The corresponding elements in the commutative diagram (see [BoP20, 9.1(c)])

will be denoted by

where κ_{N} is induced by the scalar extension $\mathbb{K} \otimes_{\mathcal{O}}-, d_{N}$ is the decomposition map and η_{N} is induced by the map $[M] \mapsto[M]$.
2.3 Let A be a block of $k G$ and B a block of $k H$. Let (P, e) be an A-Brauer pair. We denote by Λ_{H} the set of pairs $(\phi,(Q, f))$ where (Q, f) is a $k H$-Brauer pair and $\phi: Q \rightarrow P$ is an isomorphism. The group $N_{G}(P, e) \times H$ acts on Λ_{H} via $(g, h) \cdot(\phi,(Q, f))=\left(c_{g} \phi c_{h}^{-1},{ }^{h}(Q, f)\right)$.

We also set $\Lambda_{B} \subseteq \Lambda_{H}$ to be the subset consisting of the pairs $(\phi,(Q, f))$ where (Q, f) is a B-Brauer pair. Note that Λ_{B} is still an $N_{G}(P, e) \times H$-set via the above action. We denote by $\tilde{\Lambda}_{H}$ a set of representatives of the H-orbits of Λ_{H} and set $\tilde{\Lambda}_{B}:=\tilde{\Lambda}_{H} \cap \Lambda_{B}$.

The crucial point in the proof of Theorem 1.3 is to observe that Lemma 10.3 in [BoP20] can be generalized as follows.
2.4 Proposition Let $A \in \operatorname{Bl}(\mathcal{O} G)$ be a block algebra and let $B=B_{1} \times \cdots \times B_{m}$ be a direct product of block algebras where $B_{j} \in \operatorname{Bl}\left(\mathcal{O} H_{j}\right)$. For each $j \in\{1, \cdots, m\}$, let $\gamma_{j} \in T^{\Delta}\left(A, B_{j}\right)$ be such that

$$
\begin{equation*}
\gamma_{1} \cdot H_{1} \gamma_{1}^{\circ}+\cdots+\gamma_{m} \cdot H_{m} \gamma_{m}^{\circ}=[A] \in T^{\Delta}(A, A) \tag{1}
\end{equation*}
$$

Let also (P, e) be an A-Brauer pair. Consider the set of pairs $\Lambda_{B_{j}} \subseteq \Lambda_{H_{j}}$ as in 2.3. Then there exists a unique $j \in\{1, \cdots, m\}$ and a unique H_{j}-orbit of pairs $\left(\phi_{j},\left(Q_{j}, f_{j}\right)\right) \in \Lambda_{B_{j}}$ such that

$$
e \mu_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j} \neq 0 \quad \text { in } \quad R\left(\mathbb{K} C_{G}(P) e, \mathbb{K} C_{H_{j}}\left(Q_{j}\right) f_{j}\right)
$$

Moreover, $e \mu_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j}$ is a perfect isometry between $\mathbb{K} C_{G}(P) e$ and $\mathbb{K} C_{H_{j}}\left(Q_{j}\right) f_{j}$ and $e \nu_{j}\left(P, \phi, Q_{j}\right) f_{j} \neq 0$ in $R\left(k C_{G}(P) e, k C_{H_{j}}\left(Q_{j}\right) f_{j}\right)$.
Proof The proof of this lemma is similar to the proof of [BoP20, Lemma 10.3]. The key point is to observe that Corollary 8.8 in [BoP20] is still applicable in this case. We add a sketch of the proof for the convenience of the reader.

Apply the Brauer construction with respect to $\Delta(P)$ to Equation (1). The equality

$$
\begin{aligned}
{\left[k C_{G}(P) e\right] } & =[e A(\Delta(P)) e]=e\left(\sum_{j=1}^{m}\left(\gamma_{j} \cdot H_{j} \gamma_{j}^{\circ}\right)(\Delta(P))\right) e \\
& =\sum_{j=1}^{m} \sum_{\left(\phi_{j},\left(Q_{j}, f_{j}\right)\right) \in \tilde{\Lambda}_{H_{j}}} e \bar{\gamma}_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j} \cdot C_{H_{j}}\left(Q_{j}\right)
\end{aligned} f_{j} \overline{\gamma^{\circ}}\left(Q_{j}, \phi_{j}^{-1}, P\right) e .
$$

holds in $T^{\Delta}\left(k C_{G}(P) e, k C_{G}(P) e\right)$. Lifting this equation from k to \mathcal{O} and extending the scalars to \mathbb{K}, we get

$$
\left[\mathbb{K} C_{G}(P) e\right]=\sum_{j=1}^{m} \sum_{\left(\phi_{j},\left(Q_{j}, f_{j}\right)\right) \in \tilde{\Lambda}_{H_{j}}} e \mu_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j} \cdot C_{H_{j}}\left(Q_{j}\right)\left(e \mu_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j}\right)^{\circ}
$$

in $R\left(\mathbb{K} C_{G}(P) e, \mathbb{K} C_{G}(P) e\right)$. The statement follows now from Corollaries 8.8 and 8.11 in [BoP20].

Now we can prove a weaker version of Theorem 1.3.
2.5 Corollary Let $A=A_{1} \times \cdots \times A_{n}$ and $B=B_{1} \times \cdots \times B_{m}$ be direct products of block algebras where $A_{i} \in \operatorname{Bl}\left(\mathcal{O} G_{i}\right)$ and $B_{j} \in \operatorname{Bl}\left(\mathcal{O} H_{j}\right)$ with a_{i} and b_{j} their respective identity elements. Assume that there exists a p-permutation equivalence $\gamma=\left(\gamma_{i j}\right)$ between A and B. Then for each $i \in\{1, \cdots, n\}$ there exists a unique $j \in\{1, \cdots, m\}$ such that

$$
\mu_{i j} \neq 0 \quad \text { in } \quad R\left(\mathbb{K} G_{i} a_{i}, \mathbb{K} H_{j} b_{j}\right)
$$

This defines a bijection between the sets $\{1, \cdots, n\}$ and $\{1, \cdots, m\}$. In particular, we have $n=m$ and if A_{i} and B_{j} are corresponding blocks via the bijection above, then $\mu_{i j}$ is a perfect isometry between $\mathbb{K} G_{i} a_{i}$ and $\mathbb{K} H_{j} b_{j}$.

Proof Let $i \in\{1, \cdots, n\}$. Since γ is a p-permutation equivalence between A and B, we have

$$
\gamma_{i 1} \cdot H_{1} \gamma_{i 1}^{\circ}+\cdots+\gamma_{i m} \cdot H_{m} \gamma_{i m}^{\circ}=\left[A_{i}\right] \in T^{\Delta}\left(A_{i}, A_{i}\right)
$$

Proposition 2.4 applied to the A_{i}-Brauer pair $\left(\{1\}, a_{i}\right)$ implies that there exists a unique $j \in$ $\{1, \cdots, m\}$ such that

$$
\mu_{i j} \neq 0 \quad \text { in } \quad R\left(\mathbb{K} G_{i} a_{i}, \mathbb{K} H_{j} b_{j}\right)
$$

Since by symmetry, a similar statement holds for every element $j \in\{1, \cdots, m\}$ it follows that γ is a square matrix and in each row and in each column of γ there exists a unique entry with a nonzero image in the corresponding character ring. The last statement also follows from Proposition 2.4.

The following is essentially Lemma 10.4 in [BoP20]. One can easily follow the proof of Lemma 10.4 in [BoP20] and make the necessary changes as we did in the proof of Proposition 2.4 to prove it.
2.6 Proposition Let $A \in \operatorname{Bl}(\mathcal{O G})$ be a block algebra and let $B=B_{1} \times \cdots \times B_{m}$ be a direct product of block algebras where $B_{j} \in \operatorname{Bl}\left(\mathcal{O} H_{j}\right)$. For each $j \in\{1, \cdots, m\}$, let $\gamma_{j} \in T^{\Delta}\left(A, B_{j}\right)$ be such that

$$
\begin{equation*}
\gamma_{1} \cdot H_{1} \gamma_{1}^{\circ}+\cdots+\gamma_{m} \cdot H_{m} \gamma_{m}^{\circ}=[A] \in T^{\Delta}(A, A) . \tag{2}
\end{equation*}
$$

Let (P, e) be an A-Brauer pair and set $I=N_{G}(P, e)$ and $X=N_{I \times I}(\Delta(P))$. For each $j \in$ $\{1, \cdots, m\}$ consider the set $\Lambda_{B_{j}}$ together with its $I \times H_{j}$-action from 2.3. For $\lambda_{j}=\left(\phi_{j},\left(Q_{j}, f_{j}\right)\right) \in$ $\Lambda_{B_{j}}$ we set

$$
J\left(\lambda_{j}\right):=N_{H_{j}}\left(Q_{j}, f_{j}\right), \quad I\left(\lambda_{j}\right):=N_{\left(I, \phi_{j}, J\left(\lambda_{j}\right)\right)} \leqslant I, \quad \text { and } \quad X\left(\lambda_{j}\right):=N_{I \times J\left(\lambda_{j}\right)}\left(\Delta\left(P, \phi_{j}, Q_{j}\right)\right) .
$$

Then, $X * X\left(\lambda_{j}\right)=X\left(\lambda_{j}\right)$, and for each $\chi \in \operatorname{Irr}\left(\mathbb{K} X\left(e \otimes e^{*}\right)\right)$, there exists a unique $j \in\{1, \cdots, m\}$ and a unique $I \times H_{j}$-orbit of pairs $\lambda_{j}=\left(\phi_{j},\left(Q_{j}, f_{j}\right)\right) \in \Lambda_{B_{j}}$ such that

$$
\chi \cdot{ }_{G}^{X, X\left(\lambda_{j}\right)} e \mu_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j} \neq 0 \quad \text { in } \quad R\left(\mathbb{K}\left[X\left(\lambda_{j}\right)\right]\left(e \otimes f_{j}^{*}\right) .\right.
$$

Moreover, for each $\lambda_{j}=\left(\phi_{j},\left(Q_{j}, f_{j}\right)\right) \in \Lambda_{B_{j}}$ satisfying this condition, one has

$$
\chi \cdot{ }_{G}^{X, X\left(\lambda_{j}\right)} e \mu_{j}\left(P, \phi_{j}, Q_{j}\right) f_{j} \in \pm \operatorname{Irr}\left(\mathbb{K}\left[X\left(\lambda_{j}\right)\right]\left(e \otimes f_{j}^{*}\right) .\right.
$$

2.7 Remark Suppose that we have

$$
\begin{equation*}
\gamma_{1} \cdot H_{1} \gamma_{1}^{\circ}+\cdots+\gamma_{m} \cdot H_{m} \gamma_{m}^{\circ}=[A] \in T^{\Delta}(A, A) \tag{3}
\end{equation*}
$$

as in Proposition 2.4. Since by Proposition 2.6, the results of Lemma 10.4 in [BoP20] hold, it follows that Corollaries 10.5 and 10.6 in [BoP20] are still valid in this case as well.
2.8 Corollary Let $A \in \operatorname{Bl}(\mathcal{O} G)$ be a block algebra with identity element a and let $B=B_{1} \times$ $\cdots \times B_{m}$ be a direct product of block algebras where $B_{j} \in \operatorname{Bl}\left(\mathcal{O} H_{j}\right)$ with identity element b_{j}. For each $j \in\{1, \cdots, m\}$, let $\gamma_{j} \in T^{\Delta}\left(A, B_{j}\right)$ be such that

$$
\gamma_{1} \cdot H_{1} \gamma_{1}^{\circ}+\cdots+\gamma_{m} \cdot H_{m} \gamma_{m}^{\circ}=[A] \in T^{\Delta}(A, A)
$$

Then there exists a unique $j \in\{1, \cdots, m\}$ such that $\gamma_{j} \neq 0$ in $T^{\Delta}\left(A, B_{j}\right)$.
Proof By Corollary 2.5 , there exists a unique $j \in\{1, \cdots, m\}$ such that

$$
\mu_{j} \neq 0 \quad \text { in } \quad R\left(\mathbb{K} G a, \mathbb{K} H_{j} b_{j}\right) .
$$

This means that for any $j^{\prime} \in\{1, \cdots, m\}$ with $j^{\prime} \neq j$, one has $\mu_{j^{\prime}}=0$ in $R\left(\mathbb{K} G a, \mathbb{K} H_{j^{\prime}} b_{j^{\prime}}\right)$. For every $A \otimes B_{j^{\prime}}^{*}$-Brauer pair $\left(\Delta(P, \phi, Q),\left(e \otimes f^{*}\right)\right)$, since $\left(\{1\},\left(a \otimes b_{j^{\prime}}\right)\right) \leqslant\left(\Delta(P, \phi, Q),\left(e \otimes f^{*}\right)\right)$ holds, [BoP20, Corollary 10.6] implies that

$$
e \mu_{j^{\prime}}(P, \phi, Q) f=0 \quad \text { in } \quad R\left(\mathbb{K}\left[C_{G}(P)\right] e, \mathbb{K}\left[C_{H_{j}}(Q)\right] f\right) .
$$

Therefore, by [BoP20, Corollary 10.5] one has

$$
e \mu_{j^{\prime}}(P, \phi, Q) f=0 \quad \text { in } \quad R\left(\mathbb{K}\left[N_{G \times H_{j}}\left(\Delta\left(P, \phi_{j}, Q_{j}\right)\right)\right]\left(e \otimes f^{*}\right) .\right.
$$

This shows that the element $\gamma_{j^{\prime}}$ is in the kernel of the injective map in [BoP20, Proposition $9.2(\mathrm{~b})]$ and hence equals to zero.

Proof of Theorem 1.3: The fact that $n=m$ follows from Corollary 2.5. For each $i \in\{1, \cdots, n\}$, by Corollary 2.8 , there exists a unique $j \in\{1, \cdots, m\}$ such that $\gamma_{i j} \neq 0$ in $T^{\Delta}\left(A_{i}, B_{j}\right)$. This proves the theorem.

Acknowledgement

I would like to thank Robert Boltje for his suggestion to study p-permutation equivalences between direct product of blocks.

References

[BoP20] R. Boltje, P. Perepelitsky: p-permutation equialences between blocks of group algebras. arXiv:2007.09253.
[BoX08] R. Boltje, B. Xu: On p-permutation equivalences: Between Rickard equivalences and isotypies. Transactions of the American Mathematical Society 360 (2008), 5067-5087.
[BY22] S. Bouc, D. Yilmaz: Diagonal p-permutation functors, semisimplicity, and functorial equivalence of blocks. Advances in Mathematics 411 (2022), 108799.
[Br90] M. Broué: Isométries parfaites, types de blocs, catégories dérivées. Astérisque No. 181182 (1990), 61-92.
[R96] J. Rickard: Splendid equivalences: derived categories and permutation modules. Proceedings of the London Mathematical Society 72 (1996), 331-358.
[P99] L. Puig: On the local structure of Morita and Rickard equivalences between Brauer blocks. Progress in Mathematics, 178. Birkhäuser Verlag, Basel, 1999.

Deniz Yılmaz, Department of Mathematics, Bilkent University, 06800 Ankara, Turkey. d.yilmaz@bilkent.edu.tr

