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Abstract

Let k be an algebraically closed field of characteristic 2, let G be a finite group
and let B be the principal 2-block of kG with a dihedral or a generalised quaternion
defect group P . Let also T (B) denote the group of splendid Morita auto-equivalences
of B. We show that

T (B) ∼= OutP (A) o Out(P,F) ,

where Out(P,F) is the group of outer automorphisms of P which stabilize the fusion
system F of G on P and OutP (A) is the group of algebra automorphisms of a source
algebra A of B fixing P modulo inner automorphisms induced by (AP )×.
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1 Introduction

Let k be an algebraically closed field of characteristic p > 0. Let G be a finite group and let B be a
block of kG with a maximal Brauer pair (P, e). Let F denote the fusion system of B with respect to
(P, e). Following [AOV12, Definition 1.13], we set Aut(P,F) to be the group of automorphisms of
P which stabilize F and Out(P,F) = Aut(P,F)/AutF (P ). Let Pic(B) denote the Picard group of
B. If M is a bimodule inducing a Morita equivalence of B, we denote by [M ] its isomorphism class
in Pic(B). Let E(B) and T (B) denote the subgroups of Pic(B) consisting of Morita equivalences
given by bimodules with an endopermutation source and trivial source, respectively. In particular,
T (B) is the group of splendid Morita (or Puig or source algebra) auto-equivalences of B with
product induced by the tensor product over B.

Following [BKL20], let Dk(P,F) denote the subgroup of the Dade group Dk(P ) of P consisting
of the isomorphism classes of F-stable indecomposable endopermutation kP -modules. Let also
Dt
k(P,F) denote its torsion group.

Let A be a source algebra of B and let AutP (A) denote the group of algebra automorphisms of
A which fix the image of P in A elementwise. Let also OutP (A) denote the quotient of AutP (A)
by the subgroup of inner automorphisms induced by conjugation with the elements of (AP )×.
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Let [M ] ∈ E(B). Then by [P99, 7.4, 7.6], M has a vertex of the form ∆(P, α, P ) for some
α ∈ Aut(P,F) as a k(G × G)-module. Let an endopermutation k[∆(P, α, P )]-module V be a
source of M . Boltje, Kessar and Linckelmann show in [BKL20] that the map sending the class [M ]
to the pair (V, α) induces a group homomorphism Φ making the diagram

1 OutP (A) E(B) Dk(P,F) o Out(P,F)

1 OutP (A) T (B) Out(P,F)

Φ

Φ

(1)

with exact rows commute where upward maps are inclusions. They also show in [BKL20] that if
the map Φ maps T (B) onto Out(P,F), then Φ maps E(B) to Dt

k(P,F) o Out(P,F), see [BKL20,
Theorem 1.1]. Hence they raise the question of the surjectivity of the map

Φ : T (B)→ Out(P,F) (2)

and also give examples of blocks for which Φ is not surjective (see [BKL20, Section 7]). Our aim
in this paper is to show that this map is split surjective for principal 2-blocks with dihedral and
generalised quaternion defect groups.

1.1 Theorem Let k be an algebraically closed field of characteristic 2. Let G be a finite group
with a dihedral or generalised quaternion Sylow 2-subgroup P , let B be the principal block of kG
and let F = FP (G). Then for any α ∈ Aut(P,F), the Scott module Sc(G×G,∆(P, α, P )) induces
a splendid Morita auto-equivalence of B. In particular, the map

Φ : T∆
o (B,B)→ Out(P,F)

is split surjective and one has

T (B) ∼= OutP (A) o Out(P,F) .

To prove our main theorem, it suffices to consider the groups G listed in [KL20A, Theorem 1.1]
for dihedral defect group case, and in [KL20B, Theorem 1.1] for generalised quaternion defect group
case. Koshitani and Lassueur show in particular that if G is one of these groups and if B is the
principal block of kG with a defect group P , then the Scott module Sc(G × G,∆(P )) induces a
splendid Morita auto-equivalence of B. We will follow the blueprints of [KL20A] and [KL20B]
to show that actually the Scott module Sc(G × G,∆(P, α, P )), for any α ∈ Aut(P, F ) induces a
splendid Morita auto-equivalence of B. The fact that the map α may not be the identity map
makes some of the preliminary results and proofs more technical. We will try to write as much as
possible to explain these technicalities clearly and as little as possible not to repeat the proofs in
[KL20A] and [KL20B].

2 Proof of Main Theorem

In this section we prove Theorem 1.1. Let k be an algebraically closed field of characteristic p > 0.

2.1 Lemma Let G and G′ be two finite groups with a common Sylow p-subgroup P , and assume
that F := FP (G) = FP (G′). Let α ∈ Aut(P,F). Then F∆(P,α,P )(G × G′) ∼= F . In particular,
F∆(P,α,P )(G×G′) is saturated.
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Proof One shows that the map

F → F∆(P,α,P )(G×G′)
Q 7→ ∆(α(Q), α,Q)

(ig : Q→ R) 7→ ((ig′ , ig) : ∆(α(Q), α,Q)→ ∆(α(R), α,R))

where g′ ∈ G with αigα
−1 = ig′ : α(Q)→ α(R) is an isomorphism.

2.2 Lemma Let G and G′ be finite p-nilpotent groups with a common Sylow p-subgroup P . Let
α ∈ Aut(P ). Then Sc(G × G′,∆(P, α, P )) induces a Morita equivalence between B0(kG) and
B0(kG′).

Proof Let M := Sc(G×G′,∆(P, α, P )), B := B0(kG) and B′ := B0(kG′). By definition of Scott
modules we have

M | 1B · IndG×G
′

∆(P,α,P )k · 1B′ = B ⊗kG IndG×G
′

∆(P,α,P )k ⊗kG′ B
′ =: N .

One has

N ⊗B′ No =
(
B ⊗kG IndG×G

′

∆(P,α,P )k ⊗kG′ B
′
)
⊗B′

(
B′ ⊗kG′ IndG

′×G
∆(P,α−1,P )k ⊗kG B

)
∼= B ⊗kG IndG×G

′

∆(P,α,P )k ⊗kG′ B
′ ⊗kG′ IndG

′×G
∆(P,α−1,P )k ⊗kG B

∼= B ⊗kG IndG×G
′

∆(P,α,P )k ⊗kG′ kP ⊗kG′ IndG
′×G

∆(P,α−1,P )k ⊗kG B
∼= B ⊗kG IndG×G∆(P )k ⊗kG B
∼= B ⊗kP B
∼= B

as (kG, kG)-bimodules. Similar calculations show that No⊗BN ∼= B′. This shows that the bimod-
ule N induces a splendid Morita equivalence between B and B′. In particular, N is indecomposable
and hence M = N . The result follows.

The following is a slight generalization of [KL20A, Lemma 3.4].

2.3 Lemma Let G and G′ be finite groups with a common Sylow p-subgroup P such that F =
FP (G) = FP (G′). Let α ∈ Aut(P,F) and set M := Sc(G × G′,∆(P, α, P )), B := B0(kG) and
B′ := B0(kG′). If M induces a stable equivalence of Morita type between B and B′, then the
following holds:

(a) kG ⊗B M = kG′ .

(b) If U is an indecomposable p-permutation kG-module with vertex 1 6= Q 6 P , then U⊗BM
has, up to isomorphism, a unique indecomposable direct summand V with vertex Q, and again V
is a p-permutation module.

(c) For any Q 6 P , Sc(G,Q)⊗B M = Sc(G′, Q)⊕ proj.

(d) For any Q 6 P , ΩQ(kG)⊗B M = ΩQ(kG′)⊕ proj.
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Proof First of all, similar to [KL20A, Lemma 3.3], one shows that for an indecomposable
∆(P, α, P )-projective p-permutation k(G × G′)-module M and a subgroup Q of P the following
conditions are equivalent:

(i) Sc(G′, Q) | kG ⊗kGM .

(ii) Sc(G×G′,∆(α(Q), α,Q)) |M .
Indeed, one shows that

k ⊗kG IndG×G
′

∆(α(Q),α,Q)k
∼= Ind1×G

1×Gk ⊗kG IndG×G
′

∆(α(Q),α,Q)k
∼= IndG

′

Q k

and the rest of the proof is similar to the proof of [KL20A, Lemma 3.2]. Now part (a) follows from
the equivalence of (i) and (ii) applied to the case Q = P and [KL20A, Theorem 2.1]. Proofs of
parts (b)-(d) are similar to the proofs of parts (b)-(d) in [KL20A, Lemma 3.4].

In what follows, we assume that p = 2.

2.4 Proposition Let G be a finite group with a Sylow 2-subgroup P which is a dihedral group
of order at least 8 and set F = FP (G). Let α ∈ Aut(P,F). Then the Scott module Sc(G ×
G,∆(P, α, P )) induces a stable Morita auto-equivalence of B0(kG).

Proof Set M := Sc(G × G,∆(P, α, P )) and B = B0(kG). Further, for each subgroup Q 6 P ,
set BQ := B0(kCG(Q)). Similar to [KL20A, Lemma 4.1] one first shows that the following are
equivalent:

(i) M induces a stable Morita auto-equivalence of B.

(ii) For every cyclic subgroup Q 6 P of order p, the bimodule M(∆(α(Q), α,Q)) induces a
Morita equivalence between Bα(Q) and BQ.

Now, since we can assume that G is one of the groups listed in [KL20A, Theorem 1.1], it
follows that P has either one or two G-conjugacy classes of involutions. It suffices to show that for
an involution t ∈ P , the bimodule M (〈α(t), t〉) induces a Morita equivalence between B〈α(t)〉 and
B〈t〉.

First let z be an involution in Z(P ). Then P is a Sylow 2-subgroup of CG(z) and CG(α(z))
which are both 2-nilpotent. So by Lemma 2.2, the bimodule

Mz := Sc (CG(α(z))× CG(z),∆(P, α, P ))

induces a Morita equivalence between B〈α(z)〉 and B〈z〉. By adopting the proof of [KL20A,
Lemma 3.2], and noting that the fusion system F∆(P,α,P )(G × G) is saturated by Lemma 2.1,
one shows that

Mz|M(〈α(z), z〉) .

Note that the module M is Brauer indecomposable. Indeed, every subgroup of ∆(P, α, P ) is of
the form ∆(α(Q), α,Q) where Q 6 P , and one has CG×G(∆(α(Q), α,Q)) = CG(α(Q)) × CG(Q).
As in the proof of [KL20A, Corollary 4.4], it follows that CG×G(∆(α(Q), α,Q)) is 2-nilpotent if
Q 6= 1, and hence M is Brauer indecomposable by [KL20A, Theorem 1.3]. This shows that

Mz = M(〈α(z), z〉) .
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Case 1: Assume that all involutions in P are G-conjugate and let t ∈ P be an involution.
Then t is conjugate to an involution z ∈ Z(P ), i.e., t = zg for some g ∈ G. Since α(t) is again an
involution, we have α(t) = α(z)g

′
for some g′ ∈ G, as well. So,

M (〈α(t), t〉) = M
(
〈α(z), z〉(g

′,g)
)

= M (g′,g)
z = Sc(CG(α(z)g

′
)× CG(zg),∆(P, α, P )(g′,g))

= Sc(CG(α(t))× CG(t),∆(P g
′
, ig′−1αig, P

g)) .

Now P g
′

and P g are Sylow 2-subgroups of CG(α(t)) and CG(t), respectively. So by Lemma 2.2, it
follows that

M (〈α(t), t〉) = Sc(CG(α(t))× CG(t),∆(P g
′
, ig′−1αig, P

g))

induces a Morita equivalence between B〈α(t)〉 and B〈t〉.
Case 2: Assume now that P has exactly two G-conjugacy classes of involutions. Let t and z be

two non-conjugate involutions with z ∈ Z(P ). By the proof of [KL20A, Lemma 4.5], the group 〈t〉
is a fully FP (G)-normalized subgroup of P . Hence, by Lemma 2.1, the group ∆(〈α(t)〉, α, 〈t〉) is a
fully F∆(P,α,P )(G×G)-normalized subgroup of ∆(P, α, P ). Since also M is Brauer indecomposable,
by [IK17, Theorem 1.3] it follows that

M (∆(〈α(t)〉, α, 〈t〉)) ∼= Sc
(
NG×G(∆(〈α(t)〉, α, 〈t〉)), N∆(P,α,P )(∆(〈α(t)〉, α, 〈t〉))

)
.

Since |∆(〈α(t)〉, α, 〈t〉)| = 2, one has

NG×G(∆(〈α(t)〉, α, 〈t〉)) = CG(α(t))× CG(t)

and

N∆(P,α,P )(∆(〈α(t)〉, α, 〈t〉)) = ∆(α(CP (t)), α, CP (t)) .

Therefore, one has

M (∆(〈α(t)〉, α, 〈t〉)) ∼= Sc (CG(α(t))× CG(t),∆(α(CP (t)), α, CP (t))) .

Now, the proof in this case is similar to the proof of Case 2 in [KL20A, Proposition 4.6], with
[KL20A, Lemma 4.5] is replaced by the isomorphism above.

Proof of Theorem 1.1: First assume that P = D2n is a dihedral group. We can assume
that G is one of the groups listed in [KL20A, Theorem 1.1]. By Proposition 2.4, the bimodule
Sc(G×G,∆(P, α, P )) induces a stable Morita auto-equivalence of B. To show that this is indeed
a Morita equivalence, one follows the steps in [KL20A, Section 5] with [KL20A, Lemma 3.4] is
replaced by Lemma 2.3.

Now assume that P = Q2n is a generalised quaternion group. We can assume that the group G
is one of the groups listed in [KL20B, Theorem 1.1(a)]. Hence Z := Z(G) = Z(P ) is a group of order
2. Write M := Sc(G×G,∆(P, α, P )), G := G/Z, P := P/Z and M := kG⊗kGM ⊗kG kG. Note
that the group P = D2n−1 is dihedral and G is one of the groups listed in [KL20A, Theorem 1.1].

Since Z is the center of P , the map α induces a map α : P → P . Moreover, again Z is central
in G, one has α ∈ Aut(P ,F) where F = FP (G). Now we claim that M = Sc(G×G,∆(P , α, P ))
which is essentially [KL20B, Lemma 3.1]. We include a short proof for the convenience of reader.

5



Since the group ∆(Z,α, Z) is central in G×G, it acts trivially on IndG×G∆(P,α,P )k and hence on
M . One has

M ∼= M ⊗k(G×H) k(G×H) | IndG×G∆(P,α,P )k ⊗k(G×H) k(G×H)

∼= k ⊗∆(P,α,P ) k(G×H)

∼= k ⊗∆(P,α,P ) k(G×H) = IndG×H
∆(P,α,P )

k

as right k(G×H)-modules. This proves our claim.
Now note that

∆(P, α, P ) ∩ (1×G) = ∆(P, α, P ) ∩ (G× 1) = 1

and

Z × Z 6 (Z × 1)∆(P, α, P ) = (1× Z)∆(P, α, P )

since (z, z′) = (zα(z′)−1, 1)(α(z′), z′), (z, z′) = (1, z′(α−1(z))−1)(z, α−1(z)) and (1, z)(α(u), u) =
(α(z−1), 1)(α(zu), zu). Hence [R98, Lemma 10.2.11] applied replacing splendid complex with bi-
module inducing splendid Morita equivalence, as in the proof of [KL20B, Lemma 3.2], implies that
M induces a splendid Morita auto-equivalence of B if and only if M induces a splendid Morita
auto-equivalence of B. The result follows from the first part.
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