Diagonal p-permutation functors

Serge Bouc, Deniz Yılmaz ${ }^{1, *}$
CNRS-LAMFA Université de Picardie-Jules Verne, 33, rue St Leu, 80039, Amiens Cedex 01 France
University of California, Santa Cruz Department of Mathematics CA 95064 USA

Abstract

Let k be an algebraically closed field of positive characteristic p, and \mathbb{F} be an algebraically closed field of characteristic 0 . We consider the \mathbb{F}-linear category $\mathbb{F} p p_{k}^{\Delta}$ of finite groups, in which the set of morphisms from G to H is the \mathbb{F}-linear extension $\mathbb{F} T^{\Delta}(H, G)$ of the Grothendieck group $T^{\Delta}(H, G)$ of p-permutation $(k H, k G)$-bimodules with (twisted) diagonal vertices. The \mathbb{F}-linear functors from $\mathbb{F} p p_{k}^{\Delta}$ to \mathbb{F}-Mod are called diagonal p-permutation functors. They form an abelian category $\mathcal{F}_{p p_{k}}^{\Delta}$.

We study in particular the functor $\mathbb{F} T^{\Delta}$ sending a finite group G to the Grothendieck group $\mathbb{F} T(G)$ of p-permutation $k G$-modules, and show that $\mathbb{F} T^{\Delta}$ is a semisimple object of $\mathcal{F}_{p p_{k}}^{\Delta}$, equal to the direct sum of specific simple functors parametrized by isomorphism classes of pairs (P, s) of a finite p-group P and a generator s of a p^{\prime}-subgroup acting faithfully on P. This leads to a precise description of the evaluations of these simple functors. In particular, we show that the simple functor indexed by the trivial pair $(1,1)$ is isomorphic to the functor sending a finite group G to $\mathbb{F} K_{0}(k G)$, where $K_{0}(k G)$ is the Grothendieck group of projective $k G$-modules.

Keywords: biset functors, p-permutation, twisted diagonal. 2010 MSC: 18B99, 20J15, 16W99

1. Introduction

Let p be a prime number. Throughout we denote by \mathbb{F} an algebraically closed field of characteristic zero, and by k an algebraically closed field of characteristic p. The p-permutation modules play a crucial role in the study of modular representation theory of finite groups. A splendid Rickard equivalence, introduced by Rickard [10], between blocks of finite group algebras is given by a chain complex consisting of p-permutation bimodules. Also a p-permutation equivalence, introduced by Boltje

[^0]and $\mathrm{Xu}[1]$, and studied extensively later by Boltje and Perepelitsky [9], is an element in the Grothendieck group of p-permutation bimodules.

In [7], Ducellier studied p-permutation functors: Consider the category $\mathbb{F} p p_{k}$ where the objects are finite groups and the morphisms between groups G and H are given by the Grothendieck group $\mathbb{F} \otimes_{\mathbb{Z}} T(H, G)$ of p-permutation $(k H, k G)$-bimodules. A p-permutation functor is an \mathbb{F}-linear functor from $\mathbb{F} p p_{k}$ to \mathbb{F}-Mod. The indecomposable direct summands of the bimodules that appears in a p-permutation equivalence between blocks of finite group algebras have twisted diagonal vertices. Therefore, inspired by the work of Ducellier, we consider a category with less morphisms: Let $\mathbb{F} p p_{k}^{\Delta}$ be a category where the objects are finite groups and the morphisms between groups G and H are given by the Grothendieck group $\mathbb{F} \otimes_{\mathbb{Z}} T^{\Delta}(H, G)$ of p-permutation $(k H, k G)$-bimodules whose indecomposable direct summands have twisted diagonal vertices. An \mathbb{F}-linear functor from $\mathbb{F} p p_{k}^{\Delta}$ to \mathbb{F}-Mod is called a diagonal p-permutation functor. Diagonal p-permutation functors form an abelian category $\mathcal{F}_{p p_{k}}^{\Delta}$.

By [2] and [4], if S is a simple R-linear representation of an R-linear category \mathcal{C} (where R is any commutative ring), and X is any object of \mathcal{C} such that $S(C) \neq\{0\}$, then $S(X)$ is a simple module for the endomorphism algebra $\operatorname{End}_{\mathcal{C}}(X)$ of X in \mathcal{C}. Conversely, to any object X of \mathcal{C} and any simple $\operatorname{End}_{\mathcal{C}}(X)$-module V, one can associate a simple R-linear representation $S_{X, V}$ of \mathcal{C}, with the property that $S_{X, V}(X) \cong V$. This gives a parametrization of the simple representations of \mathcal{C} by pairs (X, V) of an object X of \mathcal{C} and a simple $\operatorname{End}_{\mathcal{C}}(X)$-module V. However, this parametrization is not one to one in general, as many different pairs (X, V) yield the same simple functor $S_{X, V}$, up to isomorphism.

This applies in particular for the category $\mathcal{C}=\mathbb{F} p p_{k}^{\Delta}$ (and $R=\mathbb{F}$), so every simple diagonal p-permutation functor S is isomorphic to $S_{G, V}$, where G is a finite group and V is a simple $\operatorname{End}_{\mathfrak{F p p}}^{k} \Delta$ G is a group of minimal order such that $S(G) \neq\{0\}$. Then V is actually a simple module for the essential algebra $\mathcal{E}^{\Delta}(G)=\operatorname{End}_{\mathbb{F p p}}^{k}{ }^{\Delta}(G) / I$ at G, where I is the ideal generated by the morphisms that factor through groups of smaller order.

These considerations motivate the study of the essential algebra $\mathcal{E}^{\Delta}(G)$. We show that this algebra is isomorphic to the essential algebra studied in [7]. As a result, this implies that the essential algebra $\mathcal{E}^{\Delta}(G)$ is non-zero if and only if the group G is of the form $P \rtimes\langle s\rangle$ where P is a p-group and s is a generator of a p^{\prime}-cyclic group acting faithfully on P. Moreover in that case there is an algebra isomorphism $\mathcal{E}^{\Delta}(G) \cong\left(\mathbb{F}[X] / \Phi_{n}[X]\right) \rtimes \operatorname{Out}(G)$ where n is the order of s. See Theorem 3.3.

We also study the functor $\mathbb{F} T^{\Delta}$ that sends a finite group G to the Grothendieck group $\mathbb{F} T(G)$ of p-permutation $k G$-modules. We obtain a description of the lattice of its subfunctors (Theorem 5.11), and deduce that $\mathbb{F} T^{\Delta}$ is semisimple, equal to the
direct sum of its simple subfunctors (Theorem 5.14). We describe precisely these simple subfunctors, and show in particular that they are mutually non isomorphic. Next we give a formula for the \mathbb{F}-dimension of the evaluations of these simple functors at a finite group G (Theorem 5.16).

Proposition 5.9 and Theorem 5.14 also give a (very partial) answer to the question of knowing if, for a given simple diagonal p-permutation functor S, the groups G of minimal order such that $S(G) \neq\{0\}$ form a single isomorphism class of finite groups. We refer to [11], [12], [13], [3], where similar categories of functors are considered, showing that the answer to the above question is generally negative.

Finally, we prove that the simple functor $S_{1,1}$ that corresponds to the pair $(1,1)$ is isomorphic to the functor that sends a finite group G to the \mathbb{F}-linear extension $\mathbb{F} K_{0}(k G)$ of the Grothendieck group of projective $k G$-modules (Theorem 5.18).

2. Preliminaries

Let G and H be finite groups. We denote by $p_{1}: G \times H \rightarrow G$ and $p_{2}: G \times H \rightarrow H$ the canonical projections. Let $X \leqslant G \times H$ be a subgroup. We define the subgroups $k_{1}(X):=p_{1}\left(X \cap \operatorname{ker}\left(p_{2}\right)\right)$ and $k_{2}(X):=p_{2}\left(X \cap \operatorname{ker}\left(p_{1}\right)\right)$ of $p_{1}(X)$ and $p_{2}(X)$, respectively. Note that $k_{1}(X) \times k_{2}(X)$ is a normal subgroup of X. Moreover, $k_{i}(X)$ is a normal subgroup of $p_{i}(X)$ and one has a canonical isomorphism $X /\left(k_{1}(X) \times k_{2}(X)\right) \rightarrow p_{i}(X) / k_{i}(X)$ induced by the projection map p_{i} for $i=1,2$.

Let $\phi: P \rightarrow Q$ be an isomorphism between subgroups $P \leqslant G$ and $Q \leqslant H$. Then $\{(\phi(x), x): x \in P\}$ is a subgroup of $H \times G$ and a subgroup of that form is called a twisted diagonal subgroup of $H \times G$. Note that a subgroup $X \leqslant H \times G$ is a twisted diagonal subgroup if and only if $k_{1}(X)=1$ and $k_{2}(X)=1$.

Let P be a subgroup of G and M be a $k G$-module. We denote by M^{P} the k-vector space of P-fixed points of M. If $Q \leqslant P$ is a subgroup, then the map $\operatorname{Tr}_{Q}^{P}: M^{Q} \rightarrow M^{P}$ defined by $\operatorname{Tr}(m)=\sum_{x \in[P / Q]} x \cdot m$ is called the relative trace map. The quotient

$$
M[P]:=M^{P} / \sum_{Q<P} \operatorname{Tr}_{Q}^{P}\left(M^{Q}\right)
$$

is called the Brauer quotient of M at P. Note that $M[P]$ is a $k \bar{N}_{G}(P)$-module, where $\bar{N}_{G}(P):=N_{G}(P) / P$. We have $M[P]=0$ if P is not a p-group.

A $(k G, k H)$-bimodule M can be viewed as a $k(G \times H)$-module via $(g, h) \cdot m:=$ $g m h^{-1}$, for $(g, h) \in G \times H$ and $m \in M$. Similarly a $k(G \times H)$-module can be viewed as a $(k G, k H)$-bimodule. We will usually switch between these two points of views.

Definition 2.1. Let G be a finite group. A $k G$-module M is called a permutation module, if M has a G-stable k-basis. A p-permutation $k G$-module is a $k G$-module M such that $\operatorname{Res}_{S}^{G} M$ is a permutation $k S$-module for a Sylow p-subgroup S of G.

For a finite group G we denote by $T(G)$ the Grothendieck group of p-permutation $k G$-modules with respect to direct sum decompositions. If M is a p-permutation $k G$-module, then the class of M in $T(G)$ will be abusively denoted by M. The group $T(G)$ has a commutative ring structure induced by the tensor product of modules over k, and $T(G)$ will be called the ring of p-permutation modules of G, for short. If H is another finite group, we set $T(G, H):=T(G \times H)$. We denote by $T^{\Delta}(G, H)$ the subgroup of $T(G, H)$ spanned by p-permutation $k(G \times H)$-modules whose indecomposable direct summands have twisted diagonal vertices.

Let $\mathcal{P}_{G, p}$ denote the set of pairs (P, E) where P is a p-subgroup of G and E is a projective indecomposable $k \bar{N}_{G}(P)$-module. The group G acts on the set $\mathcal{P}_{G, p}$ via conjugation and we denote by $\left[\mathcal{P}_{G, p}\right]$ a set of representatives of G-orbits of $\mathcal{P}_{G, p}$. For $(P, E) \in \mathcal{P}_{G, p}$, let $M_{P, E}$ denote the unique (up to isomorphism) indecomposable p-permutation $k G$-module with the property that $M_{P, E}[P] \cong E$. Note that $M_{P, E}$ has the group P as a vertex [6, Theorem 3.2]. We denote by $\mathcal{P}_{G \times H, p}^{\Delta}$ the set of pairs $(P, E) \in \mathcal{P}_{G \times H, p}$ where P is a twisted diagonal p-subgroup of $G \times H$.

Remark 2.2. The isomorphism classes of the modules $M_{P, E}$ where $(P, E) \in \mathcal{P}_{G \times H, p}^{\Delta}$ form a \mathbb{Z}-basis for $T^{\Delta}(G, H)$.

Definition 2.3. [7, Definition 2.3.1] Let (P, s) be a pair where P is a p-group and s is a generator of a p^{\prime}-cyclic group acting on P. We denote the semidirect product $P \rtimes\langle s\rangle$ by $\langle P s\rangle$. Let (Q, t) be another such pair. We say that the pairs (P, s) and (Q, t) are isomorphic if there are group isomorphisms $\phi: P \rightarrow Q$ and $\psi:\langle s\rangle \rightarrow\langle t\rangle$ such that $\psi(s)=q \cdot t$ for some $q \in Q$ and $\phi(s \cdot u)=\psi(s) \cdot \phi(u)$ for all $u \in P$. In that case we write $(P, s) \simeq(Q, t)$.

Lemma 2.4. [7, Proposition 2.3.3] Let (P, s) and (Q, t) be two pairs. Then $(P, s) \simeq$ (Q, t) if and only if there is a group isomorphism $f:\langle P s\rangle \rightarrow\langle Q t\rangle$ such that $f(s)$ is conjugate to t.

Let $\mathcal{Q}_{G, p}$ denote the set of pairs (P, s) where P is a p-subgroup of G and $s \in N_{G}(P)$ is a p^{\prime}-element. In that case $\langle P s\rangle$ denotes the semidirect product $P \rtimes\langle s\rangle$ where the action of $\langle s\rangle$ on P is induced by conjugation. The group G acts on the set $\mathcal{Q}_{G, p}$ and we denote by $\left[\mathcal{Q}_{G, p}\right]$ a set of representatives of G-orbits. We denote by $\mathcal{Q}_{G \times H, p}^{\Delta}$ the set of pairs $(P, s) \in \mathcal{Q}_{G \times H, p}$ where P is a twisted diagonal p-subgroup of $G \times H$.

As \mathbb{F} is algebraically closed, we can chose a group isomorphism between the roots of unity in k and the p^{\prime}-roots of unity in \mathbb{F}, and this allows for a definition of (\mathbb{F} valued) Brauer characters. Now for any pair $(P, s) \in \mathcal{Q}_{G, p}$ let $\tau_{P, s}^{G}$ denote the additive map $T(G) \rightarrow \mathbb{F}$ that sends a p-permutation $k G$-module M to the value of the Brauer character of $M[P]$ at s. The map $\tau_{P, s}^{G}$ is a ring homomorphism and it extends to an \mathbb{F}-algebra homomorphism $\tau_{P, s}^{G}: \mathbb{F} \otimes_{\mathbb{Z}} T(G) \rightarrow \mathbb{F}$. The set $\left\{\tau_{P, s}^{G}:(P, s) \in\left[\mathcal{Q}_{G, p}\right]\right\}$ is the set of all species from $\mathbb{F} T(G):=\mathbb{F} \otimes_{\mathbb{Z}} T(G)$ to $\mathbb{F}[5$, Proposition 2.18].

The commutative algebra $\mathbb{F} T(G)$ is split semisimple and its primitive idempotents $F_{P, s}^{G}$ are indexed by pairs $(P, s) \in\left[\mathcal{Q}_{G, p}\right]\left[5\right.$, Corollary 2.19]. If $\phi:\langle s\rangle \rightarrow k^{\times}$is a group homomorphism, we denote by k_{ϕ} the $k\langle s\rangle$-module k on which the element s acts as multiplication by $\phi(s)$. Let $\widehat{\langle s\rangle}=\operatorname{Hom}\left(\langle s\rangle, k^{\times}\right)$denote the set of group homomorphisms. By [5, Theorem 4.12] we have the idempotent formula

$$
F_{P, s}^{G}=\frac{1}{|P||s|\left|C_{\bar{N}_{G}(P)}(s)\right|} \sum_{\substack{\varphi \in \widehat{s \mid} \\ L \leqslant P P\rangle \\ P L=\langle P s\rangle}} \tilde{\varphi}\left(s^{-1}\right)|L| \mu(L,\langle P s\rangle) \operatorname{Ind}_{L}^{G} k_{L, \varphi}^{\langle P s\rangle},
$$

where $k_{L, \varphi}^{\langle P s\rangle}=\operatorname{Res}_{L}^{\langle P s\rangle} \operatorname{Inf}_{\langle s\rangle}^{\langle P s\rangle} k_{\varphi}$, and $\tilde{\varphi}$ is the Brauer character of k_{φ}.
By [7, Proposition 2.7.8] we have another formula

$$
F_{P, s}^{G}=\frac{1}{\left|C_{N_{G}(P)}(s)\right|} \sum_{\substack{\varphi \in \widehat{s|s\rangle} \\ L^{L}=P}} \tilde{\varphi}\left(s^{-1}\right)\left|C_{L}(s)\right| \mu\left((L, P)^{s}\right) \operatorname{Ind}_{\langle L s\rangle}^{G} k_{\langle L s\rangle, \varphi}^{\langle P s\rangle} .
$$

Here $\mu\left((-,-)^{s}\right)$ is the Möbius function of the poset of s-stable subgroups of P.
Lemma 2.5. For finite groups G and H, the set $\left\{F_{P, s}^{G \times H}:(P, s) \in\left[\mathcal{Q}_{G \times H, p}^{\Delta}\right]\right\}$ of primitive idempotents form an \mathbb{F}-basis for the split semisimple algebra $\mathbb{F} T^{\Delta}(G, H)$.

Proof. First we will show that we have $F_{P, s}^{G \times H} \in \mathbb{F} T^{\Delta}(G, H)$ whenever $(P, s) \in$ $\left[\mathcal{Q}_{G \times H, p}^{\Delta}\right]$. Let $\varphi \in \widehat{\langle s\rangle}$ and $L \leqslant\langle P s\rangle$. It suffices to show that $\operatorname{Ind}_{L}^{G} k_{L, \varphi}^{\langle P s\rangle} \in \mathbb{F} T^{\Delta}(G, H)$. Since P acts trivially on $\operatorname{Inf}_{\langle s\rangle}^{\langle P s\rangle} k_{\varphi}$, the subgroup P is contained in a vertex of k_{φ} considered as a $k\langle P s\rangle$-module. But since P is the Sylow p-subgroup of $\langle P s\rangle$, it follows that P is the vertex of k_{φ}. Therefore the module $k_{L, \varphi}^{\langle P s\rangle}=\operatorname{Res}_{L}^{\langle P s\rangle} \operatorname{Inf}_{\langle s\rangle}^{\langle P s\rangle} k_{\varphi}$ has a vertex contained in $L \cap{ }^{x} P \leqslant P$ for some $x \in\langle P s\rangle$. Since a subgroup of twisted diagonal subgroup is again twisted diagonal, this means that $k_{L, \varphi}^{\langle P s\rangle}$ has twisted diagonal vertices. This shows that $\operatorname{Ind}_{L}^{G} k_{L, \varphi}^{\langle P s\rangle} \in \mathbb{F} T^{\Delta}(G, H)$ as desired. Now since the
\mathbb{F}-dimension of $\mathbb{F} T^{\Delta}(G, H)$ is equal to the cardinality of $\left[\mathcal{P} \Delta_{G \times H, p}^{\Delta}\right.$], which is equal to the cardinality of $\left[\mathcal{Q}_{G \times H, p}^{\Delta}\right]$, it follows that the set $\left\{F_{P, s}^{G \times H}:(P, s) \in\left[\mathcal{Q}_{G \times H, p}^{\Delta}\right]\right\}$ of primitive idempotents form an \mathbb{F}-basis for $\mathbb{F} T^{\Delta}(G, H)$.

Let G, H and L be finite groups. If X is a $(k G, k H)$-bimodule and Y is a $(k H, k L)$ bimodule, then $X \circ Y:=X \otimes_{k H} Y$ is a $(k G, k L)$-bimodule. Extending this product by \mathbb{F}-bilinearity, we get a map

$$
\mathbb{F} T(G, H) \circ \mathbb{F} T(H, L) \rightarrow \mathbb{F} T(G, L)
$$

Note that this induces a map

$$
\mathbb{F} T^{\Delta}(G, H) \circ \mathbb{F} T^{\Delta}(H, L) \rightarrow \mathbb{F} T^{\Delta}(G, L)
$$

which is used to define the composition of morphisms in the following category.
Definition 2.6. Let $\mathbb{F} p p_{k}^{\Delta}$ be the category with

- objects: finite groups
- $\operatorname{Mor}_{\mathbb{F} p p_{k}^{\Delta}}(G, H)=\mathbb{F} \otimes_{\mathbb{Z}} T^{\Delta}(H, G)=\mathbb{F} T^{\Delta}(H, G)$.

An \mathbb{F}-linear functor from $\mathbb{F} p p_{k}^{\Delta}$ to \mathbb{F}-Mod is called a diagonal p-permutation functor. Diagonal p-permutation functors form an abelian category $\mathcal{F}_{p p_{k}}^{\Delta}$.

3. The Essential Algebra

For a finite group G, the quotient algebra

$$
\mathcal{E}^{\Delta}(G):=\mathbb{F} T^{\Delta}(G, G) /\left(\sum_{|H|<|G|} \mathbb{F} T^{\Delta}(G, H) \circ \mathbb{F} T^{\Delta}(H, G)\right)
$$

is called the essential algebra of G.
By [7, Proposition 4.1.2 and Theorem 4.1.12] the algebra

$$
\mathcal{E}(G):=\mathbb{F} T(G, G) /\left(\sum_{|H|<|G|} \mathbb{F} T(G, H) \circ \mathbb{F} T(H, G)\right)
$$

is non-zero if and only if there exists a pair (P, s) in G such that $G=\langle P s\rangle$ and $C_{\langle s\rangle}(P)=1$. In that case, we also have, in the notation of [7, Theorem 4.1.12], an algebra isomorphism

$$
\mathcal{E}(G) \cong\left(\mathbb{F}[X] / \Phi_{n}[X]\right) \rtimes \operatorname{Out}(G)
$$

where n is the order of s, but we will not use this isomorphism in this paper.
Note that the inclusion map $\mathbb{F} T^{\Delta}(G, G) \hookrightarrow \mathbb{F} T(G, G)$ induces a map

$$
\Theta: \mathcal{E}^{\Delta}(G) \rightarrow \mathcal{E}(G)
$$

We will show that this map is an algebra isomorphism.
Let $\varphi \in \operatorname{Aut}(G)$ be an automorphism and $\lambda: G / O_{p}(G) \rightarrow k^{\times}$be a character, where $O_{p}(G)$ denotes the largest normal p-subgroup of G. We define a $(k G, k G)$ bimodule structure on $k G$, denoted by $k G_{\varphi, \lambda}$, via

$$
a \cdot g \cdot b:=\lambda(b) a g \varphi(b)
$$

for $a, b, g \in G$.
Let $\langle R t\rangle$ be a twisted diagonal subgroup of $G \times G$ with $p_{1}(\langle R t\rangle)=G$ and $p_{2}(\langle R t\rangle)=G$. Let also $\eta: p_{1}(\langle R t\rangle) \rightarrow p_{2}(\langle R t\rangle)$ be the canonical isomorphism. Then by [7, Section 4.1.2] we have an isomorphism

$$
\operatorname{Ind}_{\langle R t\rangle}^{G \times G} k_{\langle R t\rangle, \varphi}^{\langle R t\rangle} \cong k G_{\eta^{-1}, \varphi^{-1}}
$$

of $(k G, k G)$-bimodules. Again by [7, Section 4.1.2] the algebra $\mathcal{E}(G)$ is generated by the images of $k G_{\varphi, \lambda}$.
Proposition 3.1. If the essential algebra $\mathcal{E}^{\Delta}(G)$ of a finite group G is non-zero, then there exists a pair (P, s) in G such that $G=\langle P s\rangle$ and $C_{\langle s\rangle}(P)=1$.

Proof. Let (Q, t) be a pair contained in $G \times G$ such that Q is a twisted diagonal subgroup and recall the idempotent formula

$$
F_{Q, t}^{G \times G}=\frac{1}{\left|C_{N_{G \times G(Q)}(t)}\right|} \sum_{\substack{\varphi \in \widehat{\langle t\rangle} \\ L \leq Q \\ L^{t}=L}} \tilde{\varphi}\left(t^{-1}\right)\left|C_{L}(t)\right| \mu\left((L, Q)^{t}\right) \operatorname{Ind}_{\langle L t\rangle}^{G \times G} k_{L, \varphi}^{\langle Q t\rangle} .
$$

By [7, Lemma 2.5.9] we have an isomorphism

$$
\begin{aligned}
\operatorname{Ind}_{\langle L t\rangle}^{G \times G} & k_{L, \varphi}^{\langle Q t\rangle}
\end{aligned}{\cong \operatorname{Ind}_{p_{1}(\langle L t\rangle)}^{G} \otimes_{p_{1}(\langle L t\rangle)} \operatorname{Ind}_{\langle L t\rangle}^{p_{1}(\langle L t\rangle) \times p_{2}(\langle L t\rangle)}\left(k_{L, \varphi}^{\langle Q t\rangle}\right) \otimes_{p_{2}(\langle L t\rangle)} \operatorname{Res}_{p_{2}(\langle L t\rangle)}^{G}} \cong k G \otimes_{p_{1}(\langle L t\rangle)} \operatorname{Ind}_{\langle L t\rangle}^{p_{1}(\langle L t\rangle) \times p_{2}(\langle L t\rangle)}\left(k_{L, \varphi}^{\langle Q t\rangle}\right) \otimes_{p_{2}(\langle L t\rangle)} k G
$$

of $(k G, k G)$-bimodules. As $(k G, k G)$-bimodule, we have the isomorphism $k G \cong$ $\operatorname{Ind}_{\Delta G}^{G \times G} k$. Thus as $\left.\left(k G, k p_{1}(\langle L\rangle\rangle\right)\right)$-bimodule we have,

$$
\operatorname{Res}_{G \times p_{1}(\langle L t))}^{G \times G} k G \cong \operatorname{Res}_{G \times p_{1}(\langle L t\rangle)}^{G \times G} \operatorname{Ind}_{\Delta G}^{G \times G} k \cong \operatorname{Ind}_{\Delta\left(p_{1}(\langle L t\rangle)\right)}^{G \times p_{1}(\langle t\rangle)} \operatorname{Res}_{\Delta\left(p_{1}(\langle L t\rangle)\right)}^{\Delta(G)} k
$$

Therefore as $k\left(G \times p_{1}(\langle L t\rangle)\right)$-module, the indecomposable direct summands of $k G$ have vertices contained in $\Delta\left(p_{1}(\langle L t\rangle)\right)$. Similary, one can show that the indecomposable direct summands of $k G$ as $k\left(p_{2}(\langle L t\rangle) \times G\right)$-module, have vertices contained in $\Delta\left(p_{2}(\langle L t\rangle)\right)$. We also know that the module $k_{L, \varphi}^{\langle Q t\rangle}$, and hence the indecomposable direct summands of $\operatorname{Ind}_{\langle L t\rangle}^{p_{1}(\langle L t\rangle) \times p_{2}(\langle L t\rangle)}\left(k_{L, \varphi}^{\langle Q t\rangle}\right)$, have twisted diagonal vertices. Now suppose $\mathcal{E}^{\Delta}(G)$ is non-zero. Then there is an idempotent $F_{Q, t}^{G \times G}$ whose image in $\mathcal{E}^{\Delta}(G)$ is non-zero. Therefore the argument above shows that there is a pair (Q, t) in $G \times G$ such that $p_{1}(\langle Q t\rangle)=G$ and $p_{2}(\langle Q t\rangle)=G$. This implies that there is a p-subgroup P of G and a p^{\prime}-element s of G that normalises P such that $G=\langle P s\rangle$. Now we will show that in that case we have $C_{\langle s\rangle}(P)=1$.
Let $\bar{G}:=G / C_{\langle s\rangle}(P), Q:=\{(u, \bar{u}): u \in P\} \leqslant G \times \bar{G}$ and $Q^{\prime}:=\{(\bar{u}, u): u \in$ $P\} \leqslant \bar{G} \times G$. Then by [7, Proof of Proposition 4.1.2] we have an isomorphism of $(k G, k G)$-bimodules between $k G$ and a direct sum

$$
\bigoplus_{i} \operatorname{Indinf} \bar{N}_{G \times \bar{G}}^{G \times \bar{G}} F_{i} F_{i} \otimes_{k \bar{G}} \operatorname{Indinf} \frac{\bar{G} \times G}{\bar{N}_{\bar{G} \times G}\left(Q^{\prime}\right)}, F_{i}^{\prime}
$$

where $\operatorname{Indinf} \frac{G \times \bar{G}}{\bar{N}_{G \times \bar{G}}(Q)}=\operatorname{Ind}_{N_{G \times \bar{G}}(Q)}^{G \times \bar{G}} \circ \operatorname{Inf}_{\bar{N}_{G \times \bar{G}}(Q)}^{N_{G \overline{\bar{G}}}(Q)}$, and F_{i} and F_{i}^{\prime} are projective indecomposable $k \bar{N}_{G \times \bar{G}}(Q)$-modules and $k \bar{N}_{\bar{G} \times G}\left(Q^{\prime}\right)$-modules respectively. Now since F_{i} is projective indecomposable, it has the trivial group as vertex. So $\operatorname{Inf}_{\bar{N}_{G \times \bar{G}}(Q)}^{N_{G \times \bar{G}}(Q)} F_{i}$ has the group Q as a vertex. Note that the group Q is twisted diagonal. Therefore indecomposable direct summands of $\operatorname{Indinf} \bar{N}_{G \times \bar{G}}^{G \times \bar{G}}(Q), ~ F_{i}$ have twisted diagonal vertices, i.e. $\operatorname{Indinf} \bar{N}_{G \times \bar{G}}^{G \times \bar{G}}(Q) F_{i} \in \mathbb{F} T^{\Delta}(G, \bar{G})$. Similarly, we have $\operatorname{Indinf} \frac{\bar{G} \times G}{\bar{N}_{\bar{G} \times G}\left(Q^{\prime}\right)}, F_{i}^{\prime} \in \mathbb{F} T^{\Delta}(\bar{G}, G)$. Now since $\mathcal{E}^{\Delta}(G) \neq 0$, the image of identity element $k G \in \mathbb{F} T^{\Delta}(G, G)$ in $\mathcal{E}^{\Delta}(G)$ is non-zero. Hence we have $\bar{G}=G$, i.e. $C_{\langle s\rangle}(P)=1$.

Suppose we have $G=\langle P s\rangle$ and $C_{\langle s\rangle}(P)=1$. The essential algebra $\mathcal{E}^{\Delta}(G)$ is generated by the images of the primitive idempotents

$$
F_{Q, t}^{G \times G}=\frac{1}{\left|C_{N_{G \times G(Q)}(t)}\right|} \sum_{\substack{\varphi \in \widehat{\langle t\rangle} \\ L \leqslant Q \\ L^{t}=L}} \tilde{\varphi}\left(t^{-1}\right)\left|C_{L}(t)\right| \mu\left((L, Q)^{t}\right) \operatorname{Ind}_{\langle L t\rangle}^{G \times G} k_{L, \varphi}^{\langle Q t\rangle}
$$

where Q is a twisted diagonal subgroup of $G \times G$. By [7, Lemma 2.5.9], if the image of $\operatorname{Ind}_{\langle L t\rangle}^{G \times G} k_{L, \varphi}^{\langle Q t\rangle}$ is non-zero, then we must have that $p_{1}(\langle L t\rangle)=G=p_{2}(\langle L t\rangle)$. Write $t=(u, v)$. Then $p_{1}(\langle L t\rangle)=\left\langle p_{1}(L) u\right\rangle$ and $p_{2}(\langle L t\rangle)=\left\langle p_{2}(L) v\right\rangle$. Therefore we have
$|u|=|v|=|s|$. Being a subgroup of twisted diagonal subgroup Q, the group L itself is also twisted diagonal. Since $k_{1}(L)=k_{2}(L)=1$ and $|u|=|v|=|s|$, we have $k_{1}(\langle L t\rangle)=k_{2}(\langle L t\rangle)=1$. This shows that the subgroup $\langle L t\rangle$ is twisted diagonal and $p_{1}(\langle L t\rangle)=G=p_{2}(\langle L t\rangle)$. Since the images of $\operatorname{Ind}_{\langle L t\rangle}^{G \times G} k_{L, \varphi}^{\langle Q t\rangle}$ in $\mathcal{E}(G)$ with $\langle L t\rangle$ satisfying these properties, generate the non-zero algebra $\mathcal{E}(G)$, this shows that the algebra $\mathcal{E}^{\Delta}(G)$ is also non-zero and the map $\Theta: \mathcal{E}^{\Delta}(G) \rightarrow \mathcal{E}(G)$ is surjective. Thus we have proved the following:

Proposition 3.2. The essential algebra $\mathcal{E}^{\Delta}(G)$ is non-zero if and only if there is a pair (P, s) in G such that $G=\langle P s\rangle$ and $C_{\langle s\rangle}(P)=1$. Moreover the map Θ : $\mathcal{E}^{\Delta}(G) \rightarrow \mathcal{E}(G)$ is surjective.

Suppose we have $G=\langle P s\rangle$ for some pair and $C_{\langle s\rangle}(P)=1$. We will show that the map $\Theta: \mathcal{E}^{\Delta}(G) \rightarrow \mathcal{E}(G)$ is also injective.
Suppose an element $\sum \overline{r_{\varphi, \alpha} k G_{\varphi, \alpha}} \in \mathcal{E}^{\Delta}(G)$ is mapped to zero by Θ. We must show that the element $\sum r_{\varphi, \alpha} k G_{\varphi, \alpha}$ of $\mathcal{E}(G)$ is zero. Write

$$
\sum r_{\varphi, \alpha} k G_{\varphi, \alpha}=\sum_{|H|<|G|} t_{H, U_{H}, V_{H}} U_{H} \otimes_{k H} V_{H}
$$

for some $(k G, k H)$-bimodule U_{H} and $(k H, k G)$-bimodule V_{H} and some constants $t_{H, U_{H}, V_{H}} \in \mathbb{F}$. Suppose the coefficient $t_{H, U_{H}, V_{H}}$ is non-zero for some group H. Then as in [7] we can assume that $H=\langle R t\rangle$ for some pair (R, t) and that the modules U_{H} and V_{H} are indecomposable. By [7, Section 4.1] one has

$$
U_{H} \otimes_{k H} V_{H} \cong \operatorname{Indinf} \frac{G \times G}{N_{G \times G}(\Delta(P))} \bigoplus_{i}\left(k Z(P) \otimes k_{\lambda_{i}}\right)^{n_{i}}
$$

where λ_{i} is a character of $\langle s\rangle$ and $n_{i} \in \mathbb{N}$. Again by [7, Section 4.1] each summand $k Z(P) \otimes k_{\lambda_{i}}$ is a projective indecomposable $k \bar{N}_{G \times G}(\Delta(P))$-module. This shows that if the the coefficient $t_{H, U_{H}, V_{H}}$ is non-zero, then the indecomposable direct summands of the bimodule $U_{H} \otimes_{k H} V_{H}$ have twisted diagonal vertices. Therefore the element $\sum \overline{r_{\varphi, \alpha} k G_{\varphi, \alpha}}$ is zero in $\mathcal{E}^{\Delta}(G)$. This proves that the map $\Theta: \mathcal{E}^{\Delta}(G) \rightarrow \mathcal{E}(G)$ is injective. We summarise our results as a theorem below.

Theorem 3.3. The essential algebra $\mathcal{E}^{\Delta}(G)$ is non-zero if and only if there is a pair (P, s) in G such that $G=\langle P s\rangle$ and $C_{\langle s\rangle}(P)=1$. In that case, the algebra $\mathcal{E}^{\Delta}(G)$ is isomorphic to the algebra $\left(\mathbb{F}[X] / \Phi_{n}[X]\right) \rtimes \operatorname{Out}(G)$ where n is the order of s.

4. D^{Δ}-pairs

Let $H \leqslant G$ be a subgroup. The $(k G, k H)$-bimodule $k G$ is denoted by $\operatorname{Ind}_{H}^{G}$ and $(k H, k G)$-bimodule $k G$ is denoted by $\operatorname{Res}_{H}^{G}$. Similarly, if $N \unlhd G$ is a normal subgroup, the $(k G / N, k G)$-bimodule $k G / N$ is denoted by $\operatorname{Def}_{G / N}^{G}$ and $(k G, k G / N)$ bimodule $k G / N$ is denoted by $\operatorname{Inf}_{G / N}^{G}$. This notation is consistent with our previous use of induction, restriction, inflation and deflation symbols, in the sense that for example, if M is a $k H$-module, then the induced module $\operatorname{Ind}_{H}^{G} M$ is isomorphic to $\operatorname{Ind}_{H}^{G} \otimes_{k H} M$.

We have the following lemma due to [5] and [7].
Lemma 4.1. (i) Let $(P, s) \in \mathcal{Q}_{G, p}$ be a pair and $H \leqslant G$ be a subgroup. Then we have

$$
\operatorname{Res}_{H}^{G} F_{P, s}^{G}=\sum_{Q, t} F_{Q, t}^{H}
$$

where (Q, t) runs over a set of representatives of H-conjugacy classes of G conjugates of (P, s) contained in H.
(ii) Let $(Q, t) \in \mathcal{Q}_{H, p}$ be a pair and $H \leqslant G$ be a subgroup. Then we have

$$
\operatorname{Ind}_{H}^{G} F_{Q, t}^{H}=\left|N_{G}(Q, t): N_{H}(Q, t)\right| F_{Q, t}^{G} .
$$

(iii) Let $N \unlhd G$ and $(P, s) \in \mathcal{Q}_{G / N, p}$. Then

$$
\operatorname{Inf}_{G / N}^{G} F_{P, s}^{G / N}=\sum_{Q, t} F_{Q, t}^{G}
$$

where (Q, t) runs over a set of representatives of G-conjugacy classes of pairs in $\mathcal{Q}_{G, p}$ such that $Q N / N={ }^{\bar{g}} P$ and $\bar{t}={ }^{g}$ s for some $\bar{g} \in G / N$.
(iv) Let $N \unlhd G$ and $(P, s) \in \mathcal{Q}_{G, p}$. Then

$$
\operatorname{Def}_{G / N}^{G} F_{P, s}^{G}=m_{P, s, N} \cdot F_{Q, t}^{G / N}
$$

for some pair $(Q, t) \in \mathcal{Q}_{G / N, p}$ and a constant $m_{P, s, N} \in \mathbb{F}$. If $G=\langle P s\rangle$ then

$$
\operatorname{Def}_{G / N}^{G} F_{P, s}^{G}=m_{P, s, N} \cdot F_{P N / N, \bar{s}}^{G / N} .
$$

Proof. See [5, Proposition 3.1. and Proposition 3.2.] for (i) and (ii), [7, Proposition 3.1.3] for (iii) and [7, Lemma 3.1.4 and Proposition 3.1.5] for (iv).

Lemma 4.2. Let $N \unlhd G$ be a normal subgroup of G.
(i) We have $\operatorname{Def}_{G / N}^{G} \in \mathbb{F} T^{\Delta}(G / N, G)$ if and only if N is a p^{\prime}-group.
(ii) We have $\operatorname{Inf}_{G / N}^{G} \in \mathbb{F} T^{\Delta}(G, G / N)$ if and only if N is a p^{\prime}-group.

Proof. (i) Let $Q \leqslant(G / N) \times G$ be a maximal vertex of an indecomposable direct summand of the $(k G / N, k G)$-bimodule $k G / N$. Equivalently Q is a maximal p-subgroup having a fixed point on the set G / N. Suppose $(a N, b) \in Q$ stabilises a basis element $g N$ of $k G / N$. Then we have $(a N) g N b^{-1}=g N$ which implies that $a^{g} \cdot b^{-1} \in N$. Since the vertices of an indecomposable module are conjugate, we may assume that $g=1$. Thus, up to conjugacy, Q is a Sylow p-subgroup of

$$
H=\left\{(a N, b): a b^{-1} \in N\right\} \leqslant(G / N) \times G .
$$

Note that $k_{1}(Q)=k_{1}(H)=1$ and $k_{2}(Q)$ is a Sylow p-subgroup of N. Hence Q is twisted diagonal if and only if N is a p^{\prime}-group. The result follows.
(ii) Similar.

Let (P, s) be a pair and suppose $G=\langle P s\rangle$. Then by [7, Corollary 3.1.9] for any normal subgroup N of G, we have the following formula for the constant $m_{P, s, N}$:

$$
m_{P, s, N}=\frac{|s|}{|N \cap\langle s\rangle|\left|C_{G}(s)\right|} \sum_{\substack{Q \leqslant P \\ Q^{s}=Q \\\langle Q s\rangle N=G}}\left|C_{Q}(s)\right| \mu\left((Q, P)^{s}\right) .
$$

Lemma 4.3. Let (P, s) be a pair and suppose $G=\langle P s\rangle$. Then for any normal p^{\prime}-subgroup N of G we have

$$
m_{P, s, N}=\frac{1}{|N|}
$$

Proof. First observe that since N is a p^{\prime}-group, we have $N \leqslant C_{\langle s\rangle}(P)$. For any subgroup Q of P the condition $\langle Q s\rangle N=\langle P s\rangle$ implies that $|Q|=|P|$ and hence $Q=P$. Therefore the formula above becomes

$$
m_{P, s, N}=\frac{|s|\left|C_{P}(s)\right|}{|N|\left|C_{G}(s)\right|}=\frac{1}{|N|}
$$

Definition 4.4. A pair (P, s) is called D^{Δ}-pair if $\operatorname{Def}_{\langle P s\rangle / N}^{\langle P s\rangle} F_{P, s}^{\langle P s\rangle}=0$ for any nontrivial normal p^{\prime}-subgroup N of $\langle P s\rangle$.

Lemma 4.5. Let (P, s) be a pair. Then (P, s) is a D^{Δ}-pair if and only if the group $\langle P s\rangle$ does not have any nontrivial normal p^{\prime}-subgroup, that is, if and only if $C_{\langle s\rangle}(P)=1$.

Proof. By Lemma 4.3, for any normal p^{\prime}-subgroup $N \unlhd\langle P s\rangle$ we have $m_{P, s, N}=1 /|N|$. Therefore (P, s) is a D^{Δ}-pair if and only if the group $\langle P s\rangle$ does not have any nontrivial normal p^{\prime}-subgroup. The result follows.

5. The functor $\mathbb{F} \boldsymbol{T}^{\boldsymbol{\Delta}}$

By [2], the simple diagonal p-permutation functors are parametrized by the pairs (G, V) where G is a finite group and V is a simple $\mathcal{E}^{\Delta}(G)$-module. Note that this implies $\mathcal{E}^{\Delta}(G) \neq 0$.

For a simple $\mathcal{E}^{\Delta}(G)$-module V, we define two functors in $\mathbb{F} p p_{k}^{\Delta}$ by:

$$
L_{G, V}(H):=\mathbb{F} T^{\Delta}(H, G) \otimes_{\mathcal{E}^{\Delta}(G)} V
$$

and

$$
J_{G, V}(H):=\left\{\sum_{i} \phi_{i} \otimes v_{i} \in L_{G, V}: \forall \psi \in \mathbb{F} T^{\Delta}(G, H), \sum_{i}\left(\psi \circ \phi_{i}\right) \cdot v_{i}=0\right\}
$$

for any finite group H. The action of morphisms in $\mathbb{F} p p_{k}^{\Delta}$ on these evaluations is given by left composition. The functor $J_{G, V}$ is the unique maximal subfunctor of $L_{G, V}$, so the quotient

$$
S_{G, V}:=L_{G, V} / J_{G, V}
$$

is a simple functor [2].
Let $\mathbb{F} T^{\Delta}: \mathbb{F} p p_{k}^{\Delta} \rightarrow \mathbb{F}$-Mod be the functor given by

- $\mathbb{F} T^{\Delta}(G):=\mathbb{F} \otimes_{\mathbb{Z}} T(G)=\mathbb{F} T(G)$,
- $\mathbb{F} T^{\Delta}(X): \mathbb{F} T(G) \rightarrow \mathbb{F} T(H), M \mapsto X \otimes_{k H} M$ for any $X \in \mathbb{F} T^{\Delta}(H, G)$.

For any $k G$-module X, we denote by \widetilde{X} the $(k G, k G)$-bimodule $k(G \times X)$ where the action of $k G-k G$ is given by

$$
a \cdot(g, x) \cdot b^{-1}:=\left(a g b, b^{-1} x\right)
$$

for all $a, b, g \in G$ and $x \in X$. We have an isomorphism of $(k G, k G)$-bimodules

$$
\widetilde{X} \cong \operatorname{Ind}_{\delta(G)}^{G \times G^{o p}} \operatorname{Iso}(\delta)(X)
$$

where $\delta: G \rightarrow G \times G^{o p}, g \mapsto\left(g, g^{-1}\right)$. See [7, Definition 2.5.17]. Note that the image $\delta(G)$ of G in $G \times G^{o p}$ is a twisted diagonal subgroup. If X is an indecomposable p-permutation $k G$-module with a vertex Q, then any vertex of an indecomposable direct summand of \widetilde{X} is contained in $\delta(Q)$, up to conjugation. Therefore for any $X \in \mathbb{F} T(G)$ we have $\widetilde{X} \in \mathbb{F} T^{\Delta}(G, G)$.

Lemma 5.1. Let F be a subfunctor of $\mathbb{F} T^{\Delta}$. Then for any finite group G, the \mathbb{F}-vector space $F(G)$ is an ideal of the algebra $\mathbb{F} T^{\Delta}(G)$ of p-permutation modules.

Proof. Let $Y \in F(G)$ and assume X is a p-permutation $k G$-module. By [7, Proposition 2.5.18] we have an isomorphism $X \otimes_{k} Y \cong \widetilde{X} \otimes_{k G} Y$ of $k G$-modules. Since $\widetilde{X} \in \mathbb{F} T^{\Delta}(G, G)$ and F is a functor, we have $\widetilde{X} \otimes_{k G} Y \in F(G)$. This shows that $F(G)$ is an ideal of $\mathbb{F} T^{\Delta}(G)$.

Definition 5.2. For any pair (P, s) let $\mathbf{e}_{P, s}$ denote the subfunctor of $\mathbb{F} T^{\Delta}$ generated by the idempotent $F_{P, s}^{\langle P s\rangle} \in \mathbb{F} T^{\Delta}(\langle P s\rangle)$.

Proposition 5.3. Let F be a subfunctor of $\mathbb{F} T^{\Delta}$. Then we have

$$
F=\sum_{\mathbf{e}_{P, s} \leqslant F} \mathbf{e}_{P, s} .
$$

Proof. Since F is a subfunctor, we have

$$
\sum_{\mathbf{e}_{P, s} \leqslant F} \mathbf{e}_{P, s} \leqslant F
$$

Now let G be a finite group, and $u=\sum_{(P, s)} \lambda_{P, s} F_{P, s}^{G}$, where (P, s) runs in a set of representatives of G-conjugacy classes of $\mathcal{Q}_{G, p}$, and $\lambda_{P, s} \in \mathbb{F}$. Then $F_{P, s}^{G} \cdot u=$ $\lambda_{P, s} F_{P, s}^{G} \in F(G)$, since $F(G)$ is an ideal of $\mathbb{F} T^{\Delta}(G)$. Hence $F_{P, s}^{G} \in F(G)$ if $\lambda_{P, s} \neq 0$. In this case we have $\operatorname{Res}_{\langle P s\rangle}^{G} F_{P, s}^{G} \in F(\langle P s\rangle)$, which implies by Lemma 4.1 that $F_{P, s}^{\langle P s\rangle} \in F(\langle P s\rangle)$. This shows that $\mathbf{e}_{P, s} \leqslant F$. By Lemma 4.1 again, $F_{P, s}^{G}$ is a non zero scalar multiple of $\operatorname{Ind}_{\langle P s\rangle}^{G} F_{P, s}^{\langle P s\rangle}$, so $F_{P, s}^{G} \in \mathbf{e}_{P, s}(G)$, which gives finally

$$
u \in \sum_{\mathbf{e}_{P, s} \leqslant F} \mathbf{e}_{P, s}(G) .
$$

Therefore we have

$$
F=\sum_{\mathbf{e}_{P, s} \leqslant F} \mathbf{e}_{P, s}
$$

as desired.
Proposition 5.4. Let $\left(P_{i}, s_{i}\right)_{i \in I}$ be a set of pairs for an indexing set I. Then for any pair (Q, t) we have $\mathbf{e}_{Q, t} \leqslant \sum_{i \in I} \mathbf{e}_{P_{i}, s_{i}}$ if and only if $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P_{i}, s_{i}}$ for some $i \in I$.
Proof. If $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P_{i}, s_{i}}$ for some $i \in I$, then we obviously have $\mathbf{e}_{Q, t} \leqslant \sum_{i \in I} \mathbf{e}_{P_{i}, s_{i}}$. Conversely assume we have $\mathbf{e}_{Q, t} \leqslant \sum_{i \in I} \mathbf{e}_{P_{i}, s_{i}}$. Then $\mathbf{e}_{Q, t}(\langle Q t\rangle) \leqslant \sum_{i \in I} \mathbf{e}_{P_{i}, s_{i}}(\langle Q t\rangle)$ and so $F_{Q, t}^{\langle Q t\rangle} \in \sum_{i \in I} \mathbf{e}_{P_{i}, s_{i}}(\langle Q t\rangle)$. Since $F_{Q, t}^{\langle Q t\rangle}$ is a primitive idempotent and since $\mathbf{e}_{P_{i}, s_{i}}(\langle Q t\rangle)$ is an ideal of $\mathbb{F} T^{\Delta}(\langle Q t\rangle)$ it follows that we have $F_{Q, t}^{\langle Q t\rangle} \in \mathbf{e}_{P_{i}, s_{i}}(\langle Q t\rangle)$ for some $i \in I$ and hence $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P_{i}, s_{i}}$.

Let G be a finite group and $(P, s) \in \mathcal{Q}_{G, p}$ be a pair such that $G=\langle P s\rangle$. Let also $(Q, t) \in \mathcal{Q}_{H \times G, p}^{\Delta}$ for a finite group H. Suppose that $\eta: p_{1}(Q) \rightarrow p_{2}(Q)$ is the canonical isomorphism. Up to conjugation in $H \times G$, we can assume $t=\left(u, s^{j}\right)$. By [7, Section 3.2] if $p_{2}(\langle Q t\rangle) \neq G$, then the product $F_{Q, t}^{H \times G} \otimes_{k G} F_{P, s}^{G}$ is zero. So assume that we have $p_{2}(\langle Q t\rangle)=G$. This implies that we have $p_{2}(Q)=P$ and $\left|s^{j}\right|=|s|$. Then since $k_{1}(Q)=k_{2}(Q)=1$, this implies that we have $p_{1}(Q) \cong P$. Since the group Q is t-stable, the isomorphism $\eta: p_{1}(Q) \rightarrow P$ commutes with conjugations by u and s^{j}. Now [7, Equation (3.3), Section 3.2] implies that as $k H$-module the product $F_{Q, t}^{H \times G} \otimes_{k G} F_{P, s}^{G}$ is equal to

$$
\frac{1}{\left|C_{N_{H \times G}}(Q)(t)\right|\left|C_{G}(s)\right|} \sum_{\substack{\varphi \in \overline{\langle\overline{ }} \\ \psi \in \overline{\langle s\rangle} \\ \varphi^{|u|} \\ \psi \psi^{j|u|}=1}} \tilde{\varphi}(t)^{-1} \tilde{\psi}(s)^{-1}\left|C_{Q}(t)\right| \sum_{\substack{J \leq p_{1}(Q) \\ J^{u}=J}} \sigma(J) \operatorname{Ind}_{\langle J u\rangle}^{H}\left(k_{\langle J u\rangle, \phi}^{\left\langle p_{1}(Q) u\right\rangle}\right)
$$

where $\sigma(J):=\sum_{\substack{L \leq P \\ L^{s}=L \\ \eta(J)=L}}\left|C_{L}(s)\right| \mu\left((L, P)^{s}\right)$ and $\phi(u):=\varphi\left(u, s^{j}\right) \psi(s)^{j}$.
Suppose we have $H=\left\langle P^{\prime} s^{\prime}\right\rangle$ for a pair $\left(P^{\prime}, s^{\prime}\right)$. Then by [7, Lemma 2.7.6] if $\tau_{P^{\prime}, s^{\prime}}^{H}\left(F_{Q, t}^{H \times G} \otimes_{k G} F_{P, s}^{G}\right) \neq 0$, then we must have $p_{1}(Q)=P^{\prime}$ and $|u|=\left|s^{\prime}\right|$. This implies in particular that we must have $P^{\prime} \cong P$. Moreover again by [7, Lemma 2.7.6] we have $\tau_{P^{\prime}, s^{\prime}}^{H}\left(\operatorname{Ind}_{\langle J u\rangle}^{H}\left(k_{\langle J u\rangle, \phi}^{\left\langle p_{1}(Q) u\right\rangle}\right)\right)=0$ if $J \neq P^{\prime}$. Therefore if we have $P^{\prime} \cong P$ then $\tau_{P^{\prime}, s^{\prime}}^{H}\left(F_{Q, t}^{H \times G} \otimes_{k G} F_{P, s}^{G}\right)$ is equal to

$$
\frac{1}{\left|C_{N_{H \times G}}(Q)(t)\right|\left|C_{G}(s)\right|} \sum_{\substack{\varphi \in\left\langle\overline{\langle t\rangle} \\ \psi \in\langle s\rangle \\ \varphi^{|u|}\right| \psi^{j u \mid} \mid=1}} \tilde{\varphi}(t)^{-1} \tilde{\psi}(s)^{-1}\left|C_{Q}(t)\right|\left|C_{P}(s)\right| \tilde{\phi}\left(s^{\prime}\right) .
$$

This shows that if we have $\mathbb{F} T^{\Delta}\left(\left\langle P^{\prime} s^{\prime}\right\rangle,\langle P s\rangle\right) \otimes_{k\langle P s\rangle} F_{P, s}^{\langle P s\rangle} \neq 0$, then there is an isomorphism $\eta: P^{\prime} \rightarrow P$ and a p^{\prime}-element $\left(u, s^{j}\right) \in\left\langle P^{\prime} s^{\prime}\right\rangle \times\langle P s\rangle$ such that $\eta \circ c_{u}=c_{s^{j}} \circ \eta$ and $|u|=\left|s^{\prime}\right|,\left|s^{j}\right|=|s|$. In that case, assume further that $C_{\langle s\rangle}(P)=1$. Then we have $\left|c_{s}\right|=|s|$ and $\left|c_{s^{j}}\right|=\left|s^{j}\right|$. Since we have $\eta \circ c_{u}=c_{s^{j}} \circ \eta$ it follows that $\left|c_{u}\right|=\left|c_{s^{j}}\right|$. Therefore we have $|s|\left|\left|s^{\prime}\right|\right.$. But then [7, Proposition 2.3.6] implies that there is a surjective group homomorphism $\bar{\eta}:\left\langle P^{\prime} s^{\prime}\right\rangle \rightarrow\langle P s\rangle$ that induces an isomorphism of pairs $\left(P^{\prime} \operatorname{ker}(\bar{\eta}) / \operatorname{ker}(\bar{\eta}), s^{\prime} \operatorname{ker}(\bar{\eta})\right) \simeq(P, s)$. Note that since $\left|P^{\prime}\right|=|P|$ the order of $\operatorname{ker}(\bar{\eta})$ is coprime to p. We have the following:

Lemma 5.5. Let (P, s) be a pair with $C_{\langle s\rangle}(P)=1$ and set $G:=\langle P s\rangle$. Let H be a finite group. The following statements are equivalent:
(i) $\mathbb{F} T^{\Delta}(H, G) \otimes_{k G} F_{P, s}^{G} \neq 0$.
(ii) There exists a pair $\left(P^{\prime}, s^{\prime}\right)$ contained in H such that the pair (P, s) is isomorphic to a p^{\prime}-quotient of the pair $\left(P^{\prime}, s^{\prime}\right)$, that is, there exists a normal p^{\prime}-subgroup K of $\left\langle P^{\prime} s^{\prime}\right\rangle$ such that $(P, s) \simeq\left(P^{\prime} K / K, s^{\prime} K\right)$.

Proof. (i) \Rightarrow (ii) Suppose we have $\mathbb{F} T^{\Delta}(H, G) \otimes_{k G} F_{P, s}^{G} \neq 0$. Then there exists a pair $\left(P^{\prime}, s^{\prime}\right)$ in H such that

$$
F_{P^{\prime}, s^{\prime}}^{H} \in \mathbb{F} T^{\Delta}(H, G) \otimes_{k G} F_{P, s}^{G} .
$$

Via the restriction map this implies that we have

$$
F_{P^{\prime}, s^{\prime}}^{\left\langle P^{\prime}\right\rangle} \in \mathbb{F} T^{\Delta}\left(\left\langle P^{\prime} s^{\prime}\right\rangle, G\right) \otimes_{k G} F_{P, s}^{G} .
$$

Therefore by the argument above we have an isomorphism $\left(P^{\prime} K / K, s^{\prime} K\right) \simeq(P, s)$ of pairs where K is a normal p^{\prime}-subgroup of $\left\langle P^{\prime} s^{\prime}\right\rangle$.
(ii) \Rightarrow (i) Suppose $\Phi:\left(P^{\prime} K / K, s^{\prime} K\right) \rightarrow(P, s)$ is an isomorphism of pairs where K is a normal p^{\prime}-subgroup of $\left\langle P^{\prime} s^{\prime}\right\rangle$. Then we have

$$
\operatorname{Ind}_{\left\langle P^{\prime} s^{\prime}\right\rangle}^{H} \operatorname{Inf}_{\left\langle P^{\prime} s^{\prime}\right\rangle / K}^{\left\langle P^{\prime}\right\rangle} \operatorname{Iso}(\Phi) F_{P, s}^{G} \neq 0
$$

This shows (i).

Proposition 5.6. Let (P, s) be a pair. The following are equivalent:
(i) (P, s) is a D^{Δ}-pair, that is, for any nontrivial normal p^{\prime}-subgroup N of $\langle P s\rangle$, we have $\operatorname{Def}_{\langle P s\rangle / N}^{\langle P s\rangle} F_{P, s}^{\langle P s\rangle}=0$.
(ii) For any finite group H with $|H|<|\langle P s\rangle|$, we have $\mathbf{e}_{P, s}(H)=\{0\}$.
(iii) If H is a finite group with $\mathbf{e}_{P, s}(H) \neq\{0\}$, then the pair (P, s) is isomorphic to a p^{\prime}-quotient of a pair $\left(P^{\prime}, s^{\prime}\right)$ contained in H.
(iv) The group $\langle P s\rangle$ does not have any nontrivial normal p^{\prime}-subgroup.
(v) We have $C_{\langle s\rangle}(P)=1$.

Proof. (v) $\Leftrightarrow(\mathrm{iv}) \Leftrightarrow(\mathrm{i}):$ This follows from Lemma 4.5.
(i) \Rightarrow (iii): Since (P, s) is a D^{Δ}-pair, we have $C_{\langle s\rangle}(P)=1$. So (iii) follows from Lemma 5.5.
(iii) \Rightarrow (ii): Assume that (iii) holds and $\mathbf{e}_{P, s}(H) \neq 0$ where H is a finite group with $|H|<|\langle P s\rangle|$. Then by the assumption, we have $|H| \geq\left|\left\langle P^{\prime} s^{\prime}\right\rangle\right| \geq|\langle P s\rangle|$. Contradiction.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$: Clear.

Proposition 5.7. Let (P, s) and (Q, t) be two pairs.
(i) If (Q, t) is isomorphic to a p^{\prime}-quotient of (P, s), then $\mathbf{e}_{P, s}=\mathbf{e}_{Q, t}$.
(ii) If (Q, t) is a D^{Δ}-pair, and if $\mathbf{e}_{P, s} \leqslant \mathbf{e}_{Q, t}$, then (Q, t) is isomorphic to a p^{\prime} quotient of (P, s).

Proof. (i) Assume we have an isomorphism $\phi:(P K / K, s K) \rightarrow(Q, t)$ of pairs for some normal p^{\prime}-subgroup K of $\langle P s\rangle$. Then

$$
F_{P, s}^{\langle P s\rangle} \otimes_{k} \operatorname{Inf}_{\langle P s\rangle / K}^{\langle P s\rangle} \operatorname{Iso}\left(\phi^{-1}\right) F_{Q, t}^{\langle Q t\rangle} \neq 0
$$

Therefore $F_{P, s}^{\langle P s\rangle} \in \mathbf{e}_{Q, t}(\langle P s\rangle)$ which implies that $\mathbf{e}_{P, s} \leqslant \mathbf{e}_{Q, t}$.
Now we also have

$$
F_{Q, t}^{\langle Q t\rangle} \otimes_{k} \operatorname{Iso}(\phi) \operatorname{Def}_{\langle P s\rangle / K}^{\langle P s\rangle} F_{P, s}^{\langle P s\rangle} \neq 0
$$

which implies that $F_{Q, t}^{\langle Q t\rangle} \in \mathbf{e}_{P, s}(\langle Q t\rangle)$. Therefore $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P, s}$ and so $\mathbf{e}_{Q, t}=\mathbf{e}_{P, s}$ as desired.
(ii) Since $\mathbf{e}_{P, s} \leqslant \mathbf{e}_{Q, t}$, we have $F_{P, s}^{\langle P s\rangle} \in \mathbf{e}_{Q, t}(\langle P s\rangle)$. Since (Q, t) is a $D^{\Delta^{-}}$-pair, by the proof of Lemma 5.5 , there exists a normal p^{\prime}-subgroup K of $\langle P s\rangle$ such that $(Q, t) \simeq(P K / K, s K)$.

Proposition 5.8. Let F be a nonzero subfunctor of $\mathbb{F} T^{\Delta}$. If H is a minimal group of F, then $H=\langle Q t\rangle$ for some D^{Δ}-pair (Q, t). Moreover

$$
F(H) \leqslant \bigoplus_{\substack{\left(Q^{\prime}, t^{\prime}\right), D^{\Delta}-\text { pair } \\\left\langle Q^{\prime} t^{\prime}\right\rangle=H}} \mathbb{F} F_{Q^{\prime}, t^{\prime}}^{H}
$$

and $\mathbf{e}_{Q, t} \leqslant F$.
In particular, if $F=\mathbf{e}_{Q, t}$ for some D^{Δ}-pair (Q, t), then

$$
\mathbf{e}_{Q, t}(\langle Q t\rangle)=\bigoplus_{\substack{\left(Q^{\prime}, t^{\prime}\right)(Q, t) \\\left\langle Q^{\prime} t^{\prime}\right\rangle=\langle Q t\rangle}} \mathbb{F} F_{Q^{\prime}, t^{\prime}}^{H}
$$

Proof. Let F be a nonzero subfunctor of $\mathbb{F} T^{\Delta}$ and assume H is a minimal group of F. Since $F(H) \neq 0$, there exists a pair $(Q, t) \in \mathcal{Q}_{H, p}$ such that $F_{Q, t}^{H} \in F(H)$. This implies, via the restriction map, that $F_{Q, t}^{\langle Q t\rangle} \in F(\langle Q t\rangle)$. Since H is a minimal group, this implies that $H=\langle Q t\rangle$. Now if N is a normal p^{\prime}-subgroup of $\langle Q t\rangle$, then $\operatorname{Def}_{\langle Q t\rangle / N}^{\langle Q t\rangle} F_{Q, t}^{\langle Q t\rangle}=\frac{1}{|N|} F_{Q N / N, t N}^{\langle Q t\rangle / N} \neq 0$. Again since H is a minimal group this means that N is trivial and hence the pair (Q, t) is a D^{Δ}-pair. It follows moreover that

$$
F(H) \leqslant \bigoplus_{\substack{\left(Q^{\prime}, t^{\prime}\right), D^{\Delta}-\text { pair } \\\left\langle Q^{\prime} t^{\prime}\right\rangle=H}} \mathbb{F} F_{Q^{\prime}, t^{\prime}}^{H}
$$

For the last part, consider the functor $\mathbf{e}_{Q, t}$ for some D^{Δ}-pair (Q, t). If $F_{Q^{\prime}, t^{\prime}}^{\langle Q t\rangle} \in$ $\mathbf{e}_{Q, t}(\langle Q t\rangle)$ for some D^{Δ}-pair $\left(Q^{\prime}, t^{\prime}\right)$, then by the second part of Proposition 5.7, the pair (Q, t) is isomorphic to a p^{\prime}-quotient of the pair $\left(Q^{\prime}, t^{\prime}\right)$. But the pair $\left(Q^{\prime}, t^{\prime}\right)$ is contained in $\langle Q t\rangle$. Thus $\left(Q^{\prime}, t^{\prime}\right) \simeq(Q, t)$.
Conversely, if the pairs $\left(Q^{\prime}, t^{\prime}\right)$ and (Q, t) are isomorphic via a map ϕ, then we have $F_{Q^{\prime}, t^{\prime}}^{\langle Q t\rangle}=\operatorname{Iso}(\phi) F_{Q, t}^{\langle Q t\rangle}$. Therefore

$$
\mathbf{e}_{Q, t}(\langle Q t\rangle)=\bigoplus_{\substack{\left(Q^{\prime}, t^{\prime}\right)=(Q, t) \\\left\langle Q^{\prime} t^{\prime}\right\rangle=\langle Q t\rangle}} \mathbb{F} F_{Q^{\prime}, t^{\prime}}^{H}
$$

Let (P, s) be a pair and N a normal p^{\prime}-subgroup of $\langle P s\rangle$. Then the pair $(P N / N, s N)$ is a p^{\prime}-quotient of the pair (P, s) and so by Proposition 5.7 we have $\mathbf{e}_{P, s}=\mathbf{e}_{P N / N, s N}$.

Proposition 5.9. Let (P, s) be a pair. Then the group $\langle P s\rangle / C_{\langle s\rangle}(P)$ is the unique, up to isomorphism, minimal group of the functor $\mathbf{e}_{P, s}$. Moreover there is a unique isomorphism class of D^{Δ}-pairs $\left(P^{\prime}, s^{\prime}\right)$ such that $\left\langle P^{\prime} s^{\prime}\right\rangle \cong\langle P s\rangle / C_{\langle s\rangle}(P)$ and we have $\mathbf{e}_{P^{\prime}, s^{\prime}}=\mathbf{e}_{P, s}$. Furthermore we have $\left(P^{\prime}, s^{\prime}\right) \simeq\left(P C_{\langle s\rangle}(P) / C_{\langle s\rangle}(P), s C_{\langle s\rangle}(P)\right)$.

Proof. Let $\left(P^{\prime}, s^{\prime}\right)$ be a D^{Δ}-pair such that $\left\langle P^{\prime} s^{\prime}\right\rangle$ is a minimal group of the functor $\mathbf{e}_{P, s}$. By Proposition 5.8, we have $\mathbf{e}_{P^{\prime}, s^{\prime}} \leqslant \mathbf{e}_{P, s}$. Let $N:=C_{\langle s\rangle}(P)$. Then the pair $(P N / N, s N)$ is a D^{Δ}-pair, and we have $\mathbf{e}_{P, s}=\mathbf{e}_{P N / N, s N}$. Since $(P N / N, s N)$ is a D^{Δ}-pair, by Proposition 5.7 there exists a normal p^{\prime}-subgroup K of $\left\langle P^{\prime} s^{\prime}\right\rangle$ such that $\left(P^{\prime} K / K, s^{\prime} K\right) \simeq(P N / N, s N)$. This means that the idempotent $F_{P^{\prime} K / K, s^{\prime} K}^{\left\langle P^{\prime} s^{\prime}\right\rangle / K}$ is in the evaluation at $\left\langle P^{\prime} s^{\prime}\right\rangle / K$ of the functor $\mathbf{e}_{P N / N, s N}=\mathbf{e}_{P, s}$. Since the group $\left\langle P^{\prime} s^{\prime}\right\rangle$ is a minimal group of $\mathbf{e}_{P, s}$ it follows that we must have $K=1$. Thus we have $\left(P^{\prime}, s^{\prime}\right) \simeq(P N / N, s N)$. Therefore we have $\mathbf{e}_{P^{\prime}, s^{\prime}}=\mathbf{e}_{P N / N, s N}=\mathbf{e}_{P, s}$.

Now we will show the uniqueness of the isomorphism class of the minimal groups of $\mathbf{e}_{P, s}$. Let H be a minimal group of $\mathbf{e}_{P, s}$. It suffices to show that H is isomorphic to $\left\langle P^{\prime} s^{\prime}\right\rangle$. By Proposition 5.8 the group H is of the form $H=\langle Q t\rangle$ for some D^{Δ}-pair (Q, t). By the first part of the proof we have $\mathbf{e}_{Q, t}=\mathbf{e}_{P, s}=\mathbf{e}_{P^{\prime}, s^{\prime}}$. Since both (Q, t) and (P, s) are D^{Δ}-pairs, the equality $\mathbf{e}_{Q, t}=\mathbf{e}_{P^{\prime}, s^{\prime}}$ implies that (Q, t) is isomorphic to a p^{\prime}-quotient of (P, s), and vice versa. Therefore we have $(Q, t) \simeq\left(P^{\prime}, s^{\prime}\right)$ which implies that $H=\langle Q t\rangle \cong\left\langle P^{\prime} s^{\prime}\right\rangle$ as desired.

For any pair (P, s) we denote by (\tilde{P}, \tilde{s}) a representative of the isomorphism class of the pair $\left(P C_{\langle s\rangle}(P) / C_{\langle s\rangle}(P), s C_{\langle s\rangle}(P)\right)$.

Theorem 5.10. Let (P, s) be a pair.
(i) If (Q, t) is isomorphic to a p^{\prime}-quotient of (P, s) and if (Q, t) is a D^{Δ}-pair, then (Q, t) is isomorphic to the pair (\tilde{P}, \tilde{s}). In particular, for any normal p^{\prime} subgroup $N \unlhd\langle P s\rangle$, we have $(P N / N, s N) \simeq(\tilde{P}, \tilde{s})$ if and only if $(P N / N, s N)$ is a D^{Δ}-pair.
(ii) Let $N \unlhd\langle P s\rangle$ be a normal p^{\prime}-subgroup. Then the pair (\tilde{P}, \tilde{s}) is isomorphic to a p^{\prime}-quotient of $(P N / N, s N)$ and we have $(\tilde{P}, \tilde{s}) \simeq(\widetilde{P N / N}, \widetilde{s N})$.

Proof. (i) Since the pair (Q, t) is isomorphic to a p^{\prime}-quotient of the pair (P, s), by Proposition 5.7, we have $\mathbf{e}_{\tilde{P}, \tilde{s}}=\mathbf{e}_{P, s} \leqslant \mathbf{e}_{Q, t}$. Since (Q, t) is a D^{Δ}-pair, again by Proposition 5.7, the pair (Q, t) is isomorphic to a p^{\prime}-quotient of (\tilde{P}, \tilde{s}). But since the pair (\tilde{P}, \tilde{s}) is a D^{Δ}-pair, it follows that the pair (Q, t) is isomorphic to the pair (\tilde{P}, \tilde{s}).
(ii) Since the constant $m_{P, s, N}$ is non-zero, we have $F_{P N / N, s N}^{\langle P s\rangle / N} \in \mathbf{e}_{P, s}(\langle P s\rangle / N)=$ $\mathbf{e}_{\tilde{P}, \tilde{s}}(\langle P s\rangle / N)$. Therefore we have $\mathbf{e}_{P N / N, s N} \leqslant \mathbf{e}_{\tilde{P}, \tilde{s}}$ and since (\tilde{P}, \tilde{s}) is a D^{Δ}-pair, by Proposition 5.7, (\tilde{P}, \tilde{s}) is isomorphic to a p^{\prime}-quotient of $(P N / N, s N)$. Again since the pair (\tilde{P}, \tilde{s}) is a D^{Δ}-pair, by part (i), it is isomorphic to the pair $(\widetilde{P N / N}, \widetilde{s N})$.

Let [D^{Δ}-pair] denote a set of isomorphism classes of $D^{\Delta^{-}}$-pairs. Then the subfunctor lattice of the functor $\mathbb{F} T^{\Delta}$ is isomorphic to the lattice of subsets of the set [D^{Δ}-pair] ordered by inclusion.

Theorem 5.11. Let \mathcal{S} be the lattice of subfunctors of $\mathbb{F} T^{\Delta}$ ordered by inclusion of subfunctors. Let \mathcal{T} be the lattice of subsets of $\left[D^{\Delta}\right.$-pair $]$ ordered by inclusion of subsets. Then the map

$$
\Theta: \mathcal{S} \rightarrow \mathcal{T}
$$

that sends a subfunctor F to the set $\left\{(P, s) \in\left[D^{\Delta_{-}}\right.\right.$pair $\left.]: \mathbf{e}_{P, s} \leqslant F\right\}$, is an isomorphism of lattices with inverse

$$
\Psi: \mathcal{T} \rightarrow \mathcal{S}
$$

that sends a subset A to the functor $\sum_{(P, s) \in A} \mathbf{e}_{P, s}$.
Proof. We need to show that the maps Θ and Ψ are inverse of each other. Let $F \in \mathcal{S}$ be a subfunctor. By Proposition 5.3 we have

$$
F=\sum_{\substack{(P, s) \in \Gamma \\ \mathbf{e}_{P, s} \leqslant F}} \mathbf{e}_{P, s}
$$

where Γ is a set of representatives of the isomorphism classes of pairs. But for any pair (P, s) we have $\mathbf{e}_{P, s}=\mathbf{e}_{\tilde{P}, \tilde{s}}$ and (\tilde{P}, \tilde{s}) is a D^{Δ}-pair. Therefore we have

$$
F=\sum_{\substack{(P, s) \in\left[D^{\Delta}-\text { pair }\right] \\ \mathbf{e}_{P, s} \leqslant F}} \mathbf{e}_{P, s} .
$$

This shows that $\Psi(\Theta(F))=F$.
Now let $A \in \mathcal{T}$ be a subset and let $(Q, t) \in \Theta(\Psi(A))$ be a D^{Δ}-pair. Then we have $\mathbf{e}_{Q, t} \leqslant \sum_{(P, s) \in A} \mathbf{e}_{P, s}$ and so by Proposition 5.4 this implies that we have $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P, s}$ for some $(P, s) \in A$. Since both (P, s) and (Q, t) are D^{Δ}-pairs, it follows that $(P, s) \simeq(Q, t)$ and hence $(Q, t) \in A$. This shows that $\Theta(\Psi(A)) \subseteq A$. The inclusion $A \subseteq \Theta(\Psi(A))$ is trivial. Therefore we have $\Theta(\Psi(A))=A$.

The following corollary follows immediately from Theorem 5.11.
Corollary 5.12. We have $\mathbb{F} T^{\Delta}=\bigoplus_{(P, s) \in\left[D^{\Delta} \text {-pair }\right]} \mathbf{e}_{P, s}$.
The first statement of Proposition 5.8 can also be made stronger.
Corollary 5.13. Let F be a nonzero subfunctor of $\mathbb{F} T^{\Delta}$. If H is a minimal group of F, then $H=\langle Q t\rangle$ for some D^{Δ}-pair (Q, t) and we have

$$
F(H)=\bigoplus_{\substack{\left(Q^{\prime}, t^{\prime}\right)(Q, t) \\\left\langle Q^{\prime} t^{\prime}\right\rangle=\langle Q t\rangle}} \mathbb{F} F_{Q^{\prime}, t^{\prime}}^{H}
$$

Proof. Since H is a minimal group of F, by Proposition 5.8 it follows that $H=\langle Q t\rangle$ for some $D^{\Delta_{-}}$-pair with the property that $\mathbf{e}_{Q, t} \leqslant F$. By Theorem 5.11 we have

$$
F=\sum_{\substack{(Q, t) \in\left[D^{\Delta} \leqslant \text {-pair } \\ \mathbf{e}_{Q, t} \leqslant F\right.}} \mathbf{e}_{Q, t} .
$$

Therefore by Proposition 5.8 again we have

$$
F(H)=\mathbf{e}_{Q, t}(H)=\bigoplus_{\substack{\left(Q^{\prime}, t^{\prime}\right) \simeq(Q, t) \\\left\langle Q^{\prime} t^{\prime}\right\rangle=\langle Q t\rangle}} \mathbb{F} F_{Q^{\prime}, t^{\prime}}^{H}
$$

as desired.

Theorem 5.14. (i) Let (P, s) be a D^{Δ}-pair. Then the subfunctor $\mathbf{e}_{P, s}$ of $\mathbb{F} T^{\Delta}$ is isomorphic to the simple functor $S_{\langle P s\rangle, W_{P, s}}$ where $W_{P, s}=\underset{\substack{Q, t) \simeq(P, s) \\\langle Q t\rangle=\langle P s\rangle}}{\substack{ \\F_{P, s}}}$.
(ii) Let (P, s) and (Q, t) be D^{Δ}-pairs. Then the functor $\mathbf{e}_{P, s}$ and $\mathbf{e}_{Q, t}$ are isomorphic if and only if the pairs (P, s) and (Q, t) are isomorphic, that is, if and only if $\mathbf{e}_{P, s}=\mathbf{e}_{Q, t}$ as subfunctors of $\mathbb{F} T^{\Delta}$.
(iii) The functor $\mathbb{F} T^{\Delta}$ is semisimple. More precisely

$$
\mathbb{F} T^{\Delta} \cong \bigoplus_{(P, s)} S_{\langle P s\rangle, W_{P, s}}
$$

where (P, s) runs through a set of representatives of isomorphism classes of D^{Δ}-pairs.

Proof. (i) By Theorem 5.11 the lattice of subfunctors of $\mathbf{e}_{P, s}$ is isomorphic to the lattice of subsets of the set $\Theta\left(\mathbf{e}_{P, s}\right)=\left\{(Q, t) \in\left[D^{\Delta}\right.\right.$-pair $\left.]: \mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P, s}\right\}=\{(P, s)\}$. Therefore the subfunctor $\mathbf{e}_{P, s}$ is simple. By Proposition 5.9 the group $\langle P s\rangle$ is a minimal group of the functor $\mathbf{e}_{P, s}$. By Proposition 5.8 we have $\mathbf{e}_{P, s}(\langle P s\rangle)=W_{P, s}$. Moreover, by [7, Theorem 4.2.5], the module $W_{P, s}$ is a simple module for the essential algebra $\mathcal{E}^{\Delta}(\langle P s\rangle)$. Thus we have $\mathbf{e}_{P, s} \simeq S_{\langle P s\rangle, W_{P, s}}$ as desired.
(ii) Clearly if $(P, s) \simeq(Q, t)$, then $\mathbf{e}_{P, s}=\mathbf{e}_{Q, t}$ as subfunctors of $\mathbb{F} T^{\Delta}$. In particular $\mathbf{e}_{P, s} \cong \mathbf{e}_{Q, t}$. Conversely, if $\mathbf{e}_{P, s} \cong \mathbf{e}_{Q, t}$, then $\mathbf{e}_{P, s}$ and $\mathbf{e}_{Q, t}$ have the same minimal groups, so $(P, s) \simeq(Q, t)$ by Proposition 5.9.
(iii) By Assertion (i), this is just a reformulation of Corollary 5.12.

Proposition 5.15. Let (P, s) be a pair. Then for any finite group H, the \mathbb{F}-vector space $\mathbf{e}_{P, s}(H)$ is the subspace of $\mathbb{F} T(H)$ generated by the set of primitive idempotents $F_{Q, t}^{H}$ where (Q, t) runs over a set of conjugacy classes of pairs in H with the property that (P, s) is isomorphic to a p^{\prime}-quotient of (Q, t).

Proof. Since the pair (\tilde{P}, \tilde{s}) is isomorphic to a p^{\prime}-quotient of the pair (P, s) and since $\mathbf{e}_{P, s}=\mathbf{e}_{\tilde{P}, \tilde{s}}$, we may assume that the pair (P, s) is a D^{Δ}-pair. Since $\mathbf{e}_{P, s}(H)$ is an ideal of $\mathbb{F} T(H)$, it has a \mathbb{F}-basis consisting of a set of primitive idempotents $F_{Q, t}^{H}$. If $F_{Q, t}^{H} \in \mathbf{e}_{P, s}(H)$, then $F_{Q, t}^{\langle Q t\rangle} \in \mathbf{e}_{P, s}(\langle Q t\rangle)$ and so $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P, s}$. Since (P, s) is a D^{Δ}-pair, by Proposition 5.7, it is isomorphic to a p^{\prime}-quotient of the pair (Q, t). Conversely, if (P, s) is isomorphic to a p^{\prime}-quotient of the pair (Q, t), then again by Proposition 5.7, we have $\mathbf{e}_{Q, t} \leqslant \mathbf{e}_{P, s}$. So we have $F_{Q, t}^{\langle Q t\rangle} \in \mathbf{e}_{P, s}(\langle Q t\rangle)$ and hence $F_{Q, t}^{H} \in \mathbf{e}_{P, s}(H)$. The result follows.

Theorem 5.16. Let (P, s) be a D^{Δ}-pair. Then for any finite group H, the \mathbb{F} dimension of $S_{\langle P s\rangle, W_{P, s}}(H)$ is equal to the number of conjugacy classes of pairs (Q, t) in H such that $(\tilde{Q}, \tilde{t}) \simeq(P, s)$.

Proof. By Proposition 5.15, $\mathbf{e}_{P, s}(H)$ is generated by the idempotents $F_{Q, t}^{H}$ where (Q, t) is a pair in H with the property that the pair $(\tilde{P}, \tilde{s}) \simeq(P, s)$ is isomorphic to a p^{\prime}-quotient of the pair (Q, t). Since (P, s) is a D^{Δ}-pair, Theorem 5.10 implies that $(\tilde{Q}, \tilde{t}) \simeq(P, s)$. The result follows.

Corollary 5.17. Let H be a finite group. The \mathbb{F}-dimension of $S_{1, \mathbb{F}}(H)$ is equal to the number of isomorphism classes of simple $k H$-modules.

Proof. By Theorem 5.16, $\operatorname{dim}_{\mathbb{F}} S_{1, \mathbb{F}}(H)$ is equal to the number of conjugacy classes of pairs (Q, t) in H such that $(\tilde{Q}, \tilde{t}) \simeq(1,1)$. Suppose (Q, t) is a pair with $(\tilde{Q}, \tilde{t}) \simeq(1,1)$. Then we have $\tilde{Q}=1$ and $\tilde{t}=1$. So there exists a normal p^{\prime}-subgroup N of $\langle Q t\rangle$ such that $(Q N / N, t N) \simeq(1,1)$. Since $|Q|$ and $|N|$ are coprime, this implies that $Q=1$. We also have $t \in N$. But then $N \unlhd\langle t\rangle$ implies that $N=\langle t\rangle$. Therefore the number of conjugacy classes of pairs (Q, t) in H such that $(\tilde{Q}, \tilde{t}) \simeq(1,1)$ is equal to the number of conjugacy classes of p^{\prime}-elements in H. The result follows.

Theorem 5.18. The functor $S_{1, \mathbb{F}}$ is isomorphic to the functor that sends a finite group H to the subspace $\mathbb{F} K_{0}(k H)$ of $\mathbb{F} T^{\Delta}(H)$ generated by the projective indecomposable kH -modules.

Proof. Let H be a finite group. We have

$$
S_{1, \mathbb{F}}(H)=\left(\mathbb{F} T^{\Delta}(H, 1) \otimes_{\mathbb{F}} \mathbb{F}\right) / J_{1, \mathbb{F}}(H) \cong \mathbb{F} T^{\Delta}(H, 1) / J_{1, \mathbb{F}}(H)
$$

where $J_{1, \mathbb{F}}(H)=\left\{\phi \in \mathbb{F} T^{\Delta}(H, 1): \forall \psi \in \mathbb{F} T^{\Delta}(1, H),(\psi \circ \phi) \cdot 1=0\right\}$. Now $\mathbb{F} T^{\Delta}(H, 1)$ is isomorphic to the subspace $\mathbb{F} K_{0}(k H)$ of $\mathbb{F} T(H)$ generated by the isomorphism classes of projective indecomposable $k H$-modules. Similarly any $W \in \mathbb{F} T^{\Delta}(1, H)$ can be identified with $W^{*} \in \mathbb{F} K_{0}(k H)$. As in [8] we have the following:
For any p-permutation $k H$-modules V and W we have

$$
\left(W^{*} \otimes_{k H} V\right) \cdot 1=\operatorname{dim}_{k}\left(W^{*} \otimes_{k H} V\right)=\operatorname{dim}_{k}\left(\operatorname{Hom}_{k H}(W, V)\right)
$$

Therefore $J_{1, \mathbb{F}}(H)$ is the right kernel of the bilinear form

$$
<-,->: \mathbb{F} K_{0}(k H) \rightarrow \mathbb{F}
$$

defined as $<W, V>:=\operatorname{dim}_{k}\left(\operatorname{Hom}_{k H}(W, V)\right)$. But the matrix that represents this bilinear form is the Cartan matrix of $k H$. Since the Cartan matrix of a group algebra is non-degenerate, it follows that $J_{1, \mathbb{F}}(H)=0$. Therefore we have

$$
S_{1, \mathbb{F}}(H)=\mathbb{F} T^{\Delta}(H, 1) \otimes_{\mathbb{F}} \mathbb{F} \cong \mathbb{F} T^{\Delta}(H, 1) \cong \mathbb{F} K_{0}(k H) .
$$

Note that both of these isomorphisms are functorial in H. The result follows.
[1] Boltje R., Xu B., "On p-permutation equivalences: between Rickard equivalences and isotypies", Trans. Amer. Math. Soc. 360(10): 5067-5087, 2008.
[2] Bouc S., "Foncteurs d'ensembles munis d'une double action", J. Algebra 183 (3): 664-736, 1996.
[3] Bouc S., "Relative B-groups", Doc. Math. 24: 2431-2462, 2019.
[4] Bouc S., Thévenaz J., "Correspondence functors and finiteness conditions", J. Algebra 495: 150-198, 2018.
[5] Bouc S., Thévenaz J., "The primitive idempotents of the p-permutation ring", J. Algebra 323(10): 2905-2915, 2010.
[6] Broué M., "On Scott modules and p-permutation modules: An approach through the Brauer morphism", Proc. Amer. Math. Soc. 93(3): 401-408, 1985.
[7] Ducellier M., "Foncteurs de p-permutation" PhD Diss., (Thèse de Doctorat Spécialité Mathématiques). Université de Picardie Jules Verne, 2015. Français. https://hal.archives-ouvertes.fr/tel-02146174 .
[8] Ducellier M., "A study of a simple p-permutation functor", J. Algebra 447: 367-382, 2016.
[9] Perepelitsky P., " p-permutation equivalences between blocks of finite groups" ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.) University of California, Santa Cruz.
[10] Rickard J., "Splendid equivalences: derived categories and permutation modules", Proc. London Math Soc. (3) 72(2): 331-358, 1996.
[11] Romero N., "Simple modules over Green biset functors", J. Algebra 367: 203221, 2012.
[12] Romero N., "On fibred biset functors with fibres of order prime and four", J. Algebra 387: 185-194, 2013.
[13] Tounkara, I., "The ideals of the slice Burnside p-biset functor", J. Algebra 495: 81-113, 2018.

[^0]: *The second author is supported by the Chateaubriand Fellowship of the Office of Science and Technology of the Embassy of France in the United States.
 ${ }^{1}$ The second author is thankful to LAMFA for their hospitality during the visit.

