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CNRS-LAMFA Université de Picardie-Jules Verne, 33, rue St Leu, 80039, Amiens Cedex 01 -
France

University of California, Santa Cruz Department of Mathematics CA 95064 USA

Abstract

Let k be an algebraically closed field of positive characteristic p, and F be an algebraically closed
field of characteristic 0. We consider the F-linear category Fpp∆

k of finite groups, in which the set of
morphisms from G to H is the F-linear extension FT∆(H,G) of the Grothendieck group T∆(H,G)
of p-permutation (kH, kG)-bimodules with (twisted) diagonal vertices. The F-linear functors from
Fpp∆

k to F-Mod are called diagonal p-permutation functors. They form an abelian category F∆
ppk

.

We study in particular the functor FT∆ sending a finite group G to the Grothendieck group
FT (G) of p-permutation kG-modules, and show that FT∆ is a semisimple object of F∆

ppk
, equal to

the direct sum of specific simple functors parametrized by isomorphism classes of pairs (P, s) of a
finite p-group P and a generator s of a p′-subgroup acting faithfully on P . This leads to a precise
description of the evaluations of these simple functors. In particular, we show that the simple
functor indexed by the trivial pair (1, 1) is isomorphic to the functor sending a finite group G to
FK0(kG), where K0(kG) is the Grothendieck group of projective kG-modules.
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1. Introduction

Let p be a prime number. Throughout we denote by F an algebraically closed
field of characteristic zero, and by k an algebraically closed field of characteristic p.
The p-permutation modules play a crucial role in the study of modular representation
theory of finite groups. A splendid Rickard equivalence, introduced by Rickard [10],
between blocks of finite group algebras is given by a chain complex consisting of
p-permutation bimodules. Also a p-permutation equivalence, introduced by Boltje
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and Xu [1], and studied extensively later by Boltje and Perepelitsky [9], is an element
in the Grothendieck group of p-permutation bimodules.

In [7], Ducellier studied p-permutation functors: Consider the category Fppk
where the objects are finite groups and the morphisms between groups G and H are
given by the Grothendieck group F⊗ZT (H,G) of p-permutation (kH, kG)-bimodules.
A p-permutation functor is an F-linear functor from Fppk to F-Mod. The indecompos-
able direct summands of the bimodules that appears in a p-permutation equivalence
between blocks of finite group algebras have twisted diagonal vertices. Therefore,
inspired by the work of Ducellier, we consider a category with less morphisms: Let
Fpp∆

k be a category where the objects are finite groups and the morphisms between
groupsG andH are given by the Grothendieck group F⊗ZT

∆(H,G) of p-permutation
(kH, kG)-bimodules whose indecomposable direct summands have twisted diagonal
vertices. An F-linear functor from Fpp∆

k to F-Mod is called a diagonal p-permutation
functor. Diagonal p-permutation functors form an abelian category F∆

ppk
.

By [2] and [4], if S is a simple R-linear representation of an R-linear cate-
gory C (where R is any commutative ring), and X is any object of C such that
S(C) 6= {0}, then S(X) is a simple module for the endomorphism algebra EndC(X)
of X in C. Conversely, to any object X of C and any simple EndC(X)-module V ,
one can associate a simple R-linear representation SX,V of C, with the property that
SX,V (X) ∼= V . This gives a parametrization of the simple representations of C by
pairs (X, V ) of an object X of C and a simple EndC(X)-module V . However, this
parametrization is not one to one in general, as many different pairs (X, V ) yield the
same simple functor SX,V , up to isomorphism.

This applies in particular for the category C = Fpp∆
k (and R = F), so every simple

diagonal p-permutation functor S is isomorphic to SG,V , where G is a finite group
and V is a simple EndFpp∆

k
(G)-module. In this context, we can assume moreover that

G is a group of minimal order such that S(G) 6= {0}. Then V is actually a simple
module for the essential algebra E∆(G) = EndFpp∆

k
(G)/I at G, where I is the ideal

generated by the morphisms that factor through groups of smaller order.
These considerations motivate the study of the essential algebra E∆(G). We show

that this algebra is isomorphic to the essential algebra studied in [7]. As a result,
this implies that the essential algebra E∆(G) is non-zero if and only if the group
G is of the form P o 〈s〉 where P is a p-group and s is a generator of a p′-cyclic
group acting faithfully on P . Moreover in that case there is an algebra isomorphism
E∆(G) ∼=

(
F[X]/Φn[X]

)
o Out(G) where n is the order of s. See Theorem 3.3.

We also study the functor FT∆ that sends a finite group G to the Grothendieck
group FT (G) of p-permutation kG-modules. We obtain a description of the lattice
of its subfunctors (Theorem 5.11), and deduce that FT∆ is semisimple, equal to the
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direct sum of its simple subfunctors (Theorem 5.14). We describe precisely these
simple subfunctors, and show in particular that they are mutually non isomorphic.
Next we give a formula for the F-dimension of the evaluations of these simple functors
at a finite group G (Theorem 5.16).

Proposition 5.9 and Theorem 5.14 also give a (very partial) answer to the question
of knowing if, for a given simple diagonal p-permutation functor S, the groups G of
minimal order such that S(G) 6= {0} form a single isomorphism class of finite groups.
We refer to [11], [12], [13], [3], where similar categories of functors are considered,
showing that the answer to the above question is generally negative.

Finally, we prove that the simple functor S1,1 that corresponds to the pair (1, 1)
is isomorphic to the functor that sends a finite group G to the F-linear extension
FK0(kG) of the Grothendieck group of projective kG-modules (Theorem 5.18).

2. Preliminaries

Let G and H be finite groups. We denote by p1 : G×H → G and p2 : G× H → H
the canonical projections. Let X 6 G × H be a subgroup. We define the sub-
groups k1(X) := p1(X ∩ ker(p2)) and k2(X) := p2(X ∩ ker(p1)) of p1(X) and
p2(X), respectively. Note that k1(X) × k2(X) is a normal subgroup of X. More-
over, ki(X) is a normal subgroup of pi(X) and one has a canonical isomorphism
X/(k1(X)× k2(X))→ pi(X)/ki(X) induced by the projection map pi for i = 1, 2.

Let φ : P → Q be an isomorphism between subgroups P 6 G and Q 6 H. Then
{(φ(x), x) : x ∈ P} is a subgroup of H × G and a subgroup of that form is called a
twisted diagonal subgroup of H ×G. Note that a subgroup X 6 H ×G is a twisted
diagonal subgroup if and only if k1(X) = 1 and k2(X) = 1.

Let P be a subgroup of G and M be a kG-module. We denote by MP the k-vector
space of P -fixed points of M . If Q 6 P is a subgroup, then the map TrPQ : MQ →MP

defined by Tr(m) =
∑

x∈[P/Q] x ·m is called the relative trace map. The quotient

M [P ] := MP/
∑
Q<P

TrPQ(MQ)

is called the Brauer quotient of M at P . Note that M [P ] is a kNG(P )-module, where
NG(P ) := NG(P )/P . We have M [P ] = 0 if P is not a p-group.

A (kG, kH)-bimodule M can be viewed as a k(G ×H)-module via (g, h) ·m :=
gmh−1, for (g, h) ∈ G×H and m ∈M . Similarly a k(G×H)-module can be viewed
as a (kG, kH)-bimodule. We will usually switch between these two points of views.
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Definition 2.1. Let G be a finite group. A kG-module M is called a permutation
module, if M has a G-stable k-basis. A p-permutation kG-module is a kG-module
M such that ResGSM is a permutation kS-module for a Sylow p-subgroup S of G.

For a finite group G we denote by T (G) the Grothendieck group of p-permutation
kG-modules with respect to direct sum decompositions. If M is a p-permutation
kG-module, then the class of M in T (G) will be abusively denoted by M . The
group T (G) has a commutative ring structure induced by the tensor product of
modules over k, and T (G) will be called the ring of p-permutation modules of G, for
short. If H is another finite group, we set T (G,H) := T (G × H). We denote by
T∆(G,H) the subgroup of T (G,H) spanned by p-permutation k(G × H)-modules
whose indecomposable direct summands have twisted diagonal vertices.

Let PG,p denote the set of pairs (P,E) where P is a p-subgroup of G and E is
a projective indecomposable kNG(P )-module. The group G acts on the set PG,p
via conjugation and we denote by [PG,p] a set of representatives of G-orbits of PG,p.
For (P,E) ∈ PG,p, let MP,E denote the unique (up to isomorphism) indecomposable
p-permutation kG-module with the property that MP,E[P ] ∼= E. Note that MP,E

has the group P as a vertex [6, Theorem 3.2]. We denote by P∆
G×H,p the set of pairs

(P,E) ∈ PG×H,p where P is a twisted diagonal p-subgroup of G×H.

Remark 2.2. The isomorphism classes of the modules MP,E where (P,E) ∈ P∆
G×H,p

form a Z-basis for T∆(G,H).

Definition 2.3. [7, Definition 2.3.1] Let (P, s) be a pair where P is a p-group and
s is a generator of a p′-cyclic group acting on P . We denote the semidirect product
P o 〈s〉 by 〈Ps〉. Let (Q, t) be another such pair. We say that the pairs (P, s) and
(Q, t) are isomorphic if there are group isomorphisms φ : P → Q and ψ : 〈s〉 → 〈t〉
such that ψ(s) = q · t for some q ∈ Q and φ(s · u) = ψ(s) · φ(u) for all u ∈ P . In
that case we write (P, s) ' (Q, t).

Lemma 2.4. [7, Proposition 2.3.3] Let (P, s) and (Q, t) be two pairs. Then (P, s) '
(Q, t) if and only if there is a group isomorphism f : 〈Ps〉 → 〈Qt〉 such that f(s) is
conjugate to t.

LetQG,p denote the set of pairs (P, s) where P is a p-subgroup ofG and s ∈ NG(P )
is a p′-element. In that case 〈Ps〉 denotes the semidirect product P o 〈s〉 where the
action of 〈s〉 on P is induced by conjugation. The group G acts on the set QG,p and
we denote by [QG,p] a set of representatives of G-orbits. We denote by Q∆

G×H,p the
set of pairs (P, s) ∈ QG×H,p where P is a twisted diagonal p-subgroup of G×H.
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As F is algebraically closed, we can chose a group isomorphism between the roots
of unity in k and the p′-roots of unity in F, and this allows for a definition of (F-
valued) Brauer characters. Now for any pair (P, s) ∈ QG,p let τGP,s denote the additive
map T (G)→ F that sends a p-permutation kG-module M to the value of the Brauer
character of M [P ] at s. The map τGP,s is a ring homomorphism and it extends to an
F-algebra homomorphism τGP,s : F ⊗Z T (G) → F. The set {τGP,s : (P, s) ∈ [QG,p]} is
the set of all species from FT (G) := F⊗Z T (G) to F [5, Proposition 2.18].

The commutative algebra FT (G) is split semisimple and its primitive idempotents
FG
P,s are indexed by pairs (P, s) ∈ [QG,p] [5, Corollary 2.19]. If φ : 〈s〉 → k× is a

group homomorphism, we denote by kφ the k〈s〉-module k on which the element

s acts as multiplication by φ(s). Let 〈̂s〉 = Hom(〈s〉, k×) denote the set of group
homomorphisms. By [5, Theorem 4.12] we have the idempotent formula

FG
P,s =

1

|P ||s||CNG(P )(s)|
∑
ϕ∈〈̂s〉
L6〈Ps〉
PL=〈Ps〉

ϕ̃(s−1)|L|µ(L, 〈Ps〉)IndGLk
〈Ps〉
L,ϕ ,

where k
〈Ps〉
L,ϕ = Res

〈Ps〉
L Inf

〈Ps〉
〈s〉 kϕ, and ϕ̃ is the Brauer character of kϕ.

By [7, Proposition 2.7.8] we have another formula

FG
P,s =

1

|CNG(P )(s)|
∑
ϕ∈〈̂s〉
L6P
Ls=L

ϕ̃(s−1)|CL(s)|µ
(
(L, P )s

)
IndG〈Ls〉k

〈Ps〉
〈Ls〉,ϕ.

Here µ
(
(−,−)s

)
is the Möbius function of the poset of s-stable subgroups of P .

Lemma 2.5. For finite groups G and H, the set {FG×H
P,s : (P, s) ∈ [Q∆

G×H,p]} of

primitive idempotents form an F-basis for the split semisimple algebra FT∆(G,H).

Proof. First we will show that we have FG×H
P,s ∈ FT∆(G,H) whenever (P, s) ∈

[Q∆
G×H,p]. Let ϕ ∈ 〈̂s〉 and L 6 〈Ps〉. It suffices to show that IndGLk

〈Ps〉
L,ϕ ∈ FT∆(G,H).

Since P acts trivially on Inf
〈Ps〉
〈s〉 kϕ, the subgroup P is contained in a vertex of kϕ con-

sidered as a k〈Ps〉-module. But since P is the Sylow p-subgroup of 〈Ps〉, it follows

that P is the vertex of kϕ. Therefore the module k
〈Ps〉
L,ϕ = Res

〈Ps〉
L Inf

〈Ps〉
〈s〉 kϕ has a

vertex contained in L ∩ xP 6 P for some x ∈ 〈Ps〉. Since a subgroup of twisted

diagonal subgroup is again twisted diagonal, this means that k
〈Ps〉
L,ϕ has twisted di-

agonal vertices. This shows that IndGLk
〈Ps〉
L,ϕ ∈ FT∆(G,H) as desired. Now since the
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F-dimension of FT∆(G,H) is equal to the cardinality of [P∆
G×H,p], which is equal to

the cardinality of [Q∆
G×H,p], it follows that the set {FG×H

P,s : (P, s) ∈ [Q∆
G×H,p]} of

primitive idempotents form an F-basis for FT∆(G,H).

LetG,H and L be finite groups. IfX is a (kG, kH)-bimodule and Y is a (kH, kL)-
bimodule, then X ◦ Y := X ⊗kH Y is a (kG, kL)-bimodule. Extending this product
by F-bilinearity, we get a map

FT (G,H) ◦ FT (H,L)→ FT (G,L).

Note that this induces a map

FT∆(G,H) ◦ FT∆(H,L)→ FT∆(G,L)

which is used to define the composition of morphisms in the following category.

Definition 2.6. Let Fpp∆
k be the category with

• objects: finite groups

• MorFpp∆
k

(G,H) = F⊗Z T
∆(H,G) = FT∆(H,G).

An F-linear functor from Fpp∆
k to F-Mod is called a diagonal p-permutation func-

tor. Diagonal p-permutation functors form an abelian category F∆
ppk

.

3. The Essential Algebra

For a finite group G, the quotient algebra

E∆(G) := FT∆(G,G)/
( ∑
|H|<|G|

FT∆(G,H) ◦ FT∆(H,G)
)

is called the essential algebra of G.
By [7, Proposition 4.1.2 and Theorem 4.1.12] the algebra

E(G) := FT (G,G)/
( ∑
|H|<|G|

FT (G,H) ◦ FT (H,G)
)

is non-zero if and only if there exists a pair (P, s) in G such that G = 〈Ps〉 and
C〈s〉(P ) = 1. In that case, we also have, in the notation of [7, Theorem 4.1.12], an
algebra isomorphism

E(G) ∼=
(
F[X]/Φn[X]

)
o Out(G)
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where n is the order of s, but we will not use this isomorphism in this paper.
Note that the inclusion map FT∆(G,G) ↪→ FT (G,G) induces a map

Θ : E∆(G)→ E(G).

We will show that this map is an algebra isomorphism.
Let ϕ ∈ Aut(G) be an automorphism and λ : G/Op(G) → k× be a character,

where Op(G) denotes the largest normal p-subgroup of G. We define a (kG, kG)-
bimodule structure on kG, denoted by kGϕ,λ, via

a · g · b := λ(b)agϕ(b)

for a, b, g ∈ G.
Let 〈Rt〉 be a twisted diagonal subgroup of G × G with p1(〈Rt〉) = G and

p2(〈Rt〉) = G. Let also η : p1(〈Rt〉) → p2(〈Rt〉) be the canonical isomorphism.
Then by [7, Section 4.1.2] we have an isomorphism

IndG×G〈Rt〉 k
〈Rt〉
〈Rt〉,ϕ

∼= kGη−1,ϕ−1

of (kG, kG)-bimodules. Again by [7, Section 4.1.2] the algebra E(G) is generated by
the images of kGϕ,λ.

Proposition 3.1. If the essential algebra E∆(G) of a finite group G is non-zero,
then there exists a pair (P, s) in G such that G = 〈Ps〉 and C〈s〉(P ) = 1.

Proof. Let (Q, t) be a pair contained in G × G such that Q is a twisted diagonal
subgroup and recall the idempotent formula

FG×G
Q,t =

1

|CNG×G(Q)(t)|
∑
ϕ∈〈̂t〉
L6Q
Lt=L

ϕ̃(t−1)|CL(t)|µ((L,Q)t)IndG×G〈Lt〉 k
〈Qt〉
L,ϕ .

By [7, Lemma 2.5.9] we have an isomorphism

IndG×G〈Lt〉 k
〈Qt〉
L,ϕ
∼= IndGp1(〈Lt〉) ⊗p1(〈Lt〉) Ind

p1(〈Lt〉)×p2(〈Lt〉)
〈Lt〉 (k

〈Qt〉
L,ϕ )⊗p2(〈Lt〉) ResGp2(〈Lt〉)

∼= kG⊗p1(〈Lt〉) Ind
p1(〈Lt〉)×p2(〈Lt〉)
〈Lt〉 (k

〈Qt〉
L,ϕ )⊗p2(〈Lt〉) kG

of (kG, kG)-bimodules. As (kG, kG)-bimodule, we have the isomorphism kG ∼=
IndG×G∆G k. Thus as (kG, kp1(〈Lt〉))-bimodule we have,

ResG×GG×p1(〈Lt〉)kG
∼= ResG×GG×p1(〈Lt〉)IndG×G∆G k ∼= Ind

G×p1(〈Lt〉)
∆(p1(〈Lt〉))Res

∆(G)
∆(p1(〈Lt〉))k.
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Therefore as k
(
G × p1(〈Lt〉)

)
-module, the indecomposable direct summands of kG

have vertices contained in ∆(p1(〈Lt〉)). Similary, one can show that the indecom-
posable direct summands of kG as k

(
p2(〈Lt〉)×G

)
-module, have vertices contained

in ∆(p2(〈Lt〉)). We also know that the module k
〈Qt〉
L,ϕ , and hence the indecomposable

direct summands of Ind
p1(〈Lt〉)×p2(〈Lt〉)
〈Lt〉 (k

〈Qt〉
L,ϕ ), have twisted diagonal vertices. Now

suppose E∆(G) is non-zero. Then there is an idempotent FG×G
Q,t whose image in

E∆(G) is non-zero. Therefore the argument above shows that there is a pair (Q, t)
in G × G such that p1(〈Qt〉) = G and p2(〈Qt〉) = G. This implies that there is a
p-subgroup P of G and a p′-element s of G that normalises P such that G = 〈Ps〉.
Now we will show that in that case we have C〈s〉(P ) = 1.
Let G := G/C〈s〉(P ), Q := {(u, u) : u ∈ P} 6 G × G and Q′ := {(u, u) : u ∈
P} 6 G × G. Then by [7, Proof of Proposition 4.1.2] we have an isomorphism of
(kG, kG)-bimodules between kG and a direct sum⊕

i

IndinfG×G
NG×G(Q)

Fi ⊗kG IndinfG×G
NG×G(Q′)

F ′i

where IndinfG×G
NG×G(Q)

= IndG×GNG×G(Q) ◦ Inf
NG×G(Q)

NG×G(Q)
, and Fi and F ′i are projective inde-

composable kNG×G(Q)-modules and kNG×G(Q′)-modules respectively. Now since Fi

is projective indecomposable, it has the trivial group as vertex. So Inf
NG×G(Q)

NG×G(Q)
Fi has

the group Q as a vertex. Note that the group Q is twisted diagonal. Therefore inde-

composable direct summands of IndinfG×G
NG×G(Q)

Fi have twisted diagonal vertices, i.e.

IndinfG×G
NG×G(Q)

Fi ∈ FT∆(G,G). Similarly, we have IndinfG×G
NG×G(Q′)

F ′i ∈ FT∆(G,G).

Now since E∆(G) 6= 0, the image of identity element kG ∈ FT∆(G,G) in E∆(G) is
non-zero. Hence we have G = G, i.e. C〈s〉(P ) = 1.

Suppose we have G = 〈Ps〉 and C〈s〉(P ) = 1. The essential algebra E∆(G) is
generated by the images of the primitive idempotents

FG×G
Q,t =

1

| CNG×G(Q)(t) |
∑
ϕ∈〈̂t〉
L6Q
Lt=L

ϕ̃(t−1)|CL(t)|µ((L,Q)t)IndG×G〈Lt〉 k
〈Qt〉
L,ϕ

where Q is a twisted diagonal subgroup of G×G. By [7, Lemma 2.5.9], if the image

of IndG×G〈Lt〉 k
〈Qt〉
L,ϕ is non-zero, then we must have that p1(〈Lt〉) = G = p2(〈Lt〉). Write

t = (u, v). Then p1(〈Lt〉) = 〈p1(L)u〉 and p2(〈Lt〉) = 〈p2(L)v〉. Therefore we have
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|u| = |v| = |s|. Being a subgroup of twisted diagonal subgroup Q, the group L itself
is also twisted diagonal. Since k1(L) = k2(L) = 1 and |u| = |v| = |s|, we have
k1(〈Lt〉) = k2(〈Lt〉) = 1. This shows that the subgroup 〈Lt〉 is twisted diagonal

and p1(〈Lt〉) = G = p2(〈Lt〉). Since the images of IndG×G〈Lt〉 k
〈Qt〉
L,ϕ in E(G) with 〈Lt〉

satisfying these properties, generate the non-zero algebra E(G), this shows that the
algebra E∆(G) is also non-zero and the map Θ : E∆(G) → E(G) is surjective. Thus
we have proved the following:

Proposition 3.2. The essential algebra E∆(G) is non-zero if and only if there is
a pair (P, s) in G such that G = 〈Ps〉 and C〈s〉(P ) = 1. Moreover the map Θ :
E∆(G)→ E(G) is surjective.

Suppose we have G = 〈Ps〉 for some pair and C〈s〉(P ) = 1. We will show that
the map Θ : E∆(G)→ E(G) is also injective.
Suppose an element

∑
rϕ,αkGϕ,α ∈ E∆(G) is mapped to zero by Θ. We must show

that the element
∑
rϕ,αkGϕ,α of E(G) is zero. Write∑

rϕ,αkGϕ,α =
∑
|H|<|G|

tH,UH ,VHUH ⊗kH VH

for some (kG, kH)-bimodule UH and (kH, kG)-bimodule VH and some constants
tH,UH ,VH ∈ F. Suppose the coefficient tH,UH ,VH is non-zero for some group H. Then
as in [7] we can assume that H = 〈Rt〉 for some pair (R, t) and that the modules UH
and VH are indecomposable. By [7, Section 4.1] one has

UH ⊗kH VH ∼= IndinfG×G
NG×G(∆(P ))

⊕
i

(
kZ(P )⊗ kλi

)ni

where λi is a character of 〈s〉 and ni ∈ N. Again by [7, Section 4.1] each summand
kZ(P )⊗kλi is a projective indecomposable kNG×G(∆(P ))-module. This shows that
if the the coefficient tH,UH ,VH is non-zero, then the indecomposable direct summands
of the bimodule UH ⊗kH VH have twisted diagonal vertices. Therefore the element∑
rϕ,αkGϕ,α is zero in E∆(G). This proves that the map Θ : E∆(G) → E(G) is

injective. We summarise our results as a theorem below.

Theorem 3.3. The essential algebra E∆(G) is non-zero if and only if there is a pair
(P, s) in G such that G = 〈Ps〉 and C〈s〉(P ) = 1. In that case, the algebra E∆(G) is
isomorphic to the algebra

(
F[X]/Φn[X]

)
o Out(G) where n is the order of s.
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4. D∆-pairs

Let H 6 G be a subgroup. The (kG, kH)-bimodule kG is denoted by IndGH
and (kH, kG)-bimodule kG is denoted by ResGH . Similarly, if N E G is a normal
subgroup, the (kG/N, kG)-bimodule kG/N is denoted by DefGG/N and (kG, kG/N)-

bimodule kG/N is denoted by InfGG/N . This notation is consistent with our previous
use of induction, restriction, inflation and deflation symbols, in the sense that for
example, if M is a kH-module, then the induced module IndGHM is isomorphic to
IndGH ⊗kH M .

We have the following lemma due to [5] and [7].

Lemma 4.1. (i) Let (P, s) ∈ QG,p be a pair and H 6 G be a subgroup. Then we
have

ResGHF
G
P,s =

∑
Q,t

FH
Q,t

where (Q, t) runs over a set of representatives of H-conjugacy classes of G-
conjugates of (P, s) contained in H.

(ii) Let (Q, t) ∈ QH,p be a pair and H 6 G be a subgroup. Then we have

IndGHF
H
Q,t = |NG(Q, t) : NH(Q, t)|FG

Q,t.

(iii) Let N EG and (P, s) ∈ QG/N,p. Then

InfGG/NF
G/N
P,s =

∑
Q,t

FG
Q,t

where (Q, t) runs over a set of representatives of G-conjugacy classes of pairs
in QG,p such that QN/N = gP and t = gs for some g ∈ G/N .

(iv) Let N EG and (P, s) ∈ QG,p. Then

DefGG/NF
G
P,s = mP,s,N · FG/N

Q,t

for some pair (Q, t) ∈ QG/N,p and a constant mP,s,N ∈ F.
If G = 〈Ps〉 then

DefGG/NF
G
P,s = mP,s,N · FG/N

PN/N,s.
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Proof. See [5, Proposition 3.1. and Proposition 3.2.] for (i) and (ii), [7, Proposition
3.1.3] for (iii) and [7, Lemma 3.1.4 and Proposition 3.1.5] for (iv).

Lemma 4.2. Let N EG be a normal subgroup of G.

(i) We have DefGG/N ∈ FT∆(G/N,G) if and only if N is a p′-group.

(ii) We have InfGG/N ∈ FT∆(G,G/N) if and only if N is a p′-group.

Proof. (i) Let Q 6 (G/N)×G be a maximal vertex of an indecomposable direct sum-
mand of the (kG/N, kG)-bimodule kG/N . Equivalently Q is a maximal p-subgroup
having a fixed point on the set G/N . Suppose (aN, b) ∈ Q stabilises a basis element
gN of kG/N . Then we have (aN)gNb−1 = gN which implies that ag · b−1 ∈ N .
Since the vertices of an indecomposable module are conjugate, we may assume that
g = 1. Thus, up to conjugacy, Q is a Sylow p-subgroup of

H = {(aN, b) : ab−1 ∈ N} 6 (G/N)×G.

Note that k1(Q) = k1(H) = 1 and k2(Q) is a Sylow p-subgroup of N . Hence Q is
twisted diagonal if and only if N is a p′-group. The result follows.
(ii) Similar.

Let (P, s) be a pair and suppose G = 〈Ps〉. Then by [7, Corollary 3.1.9] for any
normal subgroup N of G, we have the following formula for the constant mP,s,N :

mP,s,N =
|s|

|N ∩ 〈s〉||CG(s)|
∑
Q6P
Qs=Q
〈Qs〉N=G

|CQ(s)|µ
(
(Q,P )s

)
.

Lemma 4.3. Let (P, s) be a pair and suppose G = 〈Ps〉. Then for any normal
p′-subgroup N of G we have

mP,s,N =
1

|N |
·

Proof. First observe that since N is a p′-group, we have N 6 C〈s〉(P ). For any
subgroup Q of P the condition 〈Qs〉N = 〈Ps〉 implies that |Q| = |P | and hence
Q = P . Therefore the formula above becomes

mP,s,N =
|s||CP (s)|
|N ||CG(s)|

=
1

|N |
·

11



Definition 4.4. A pair (P, s) is called D∆-pair if Def
〈Ps〉
〈Ps〉/NF

〈Ps〉
P,s = 0 for any non-

trivial normal p′-subgroup N of 〈Ps〉.

Lemma 4.5. Let (P, s) be a pair. Then (P, s) is a D∆-pair if and only if the
group 〈Ps〉 does not have any nontrivial normal p′-subgroup, that is, if and only
if C〈s〉(P ) = 1.

Proof. By Lemma 4.3, for any normal p′-subgroup NE〈Ps〉 we have mP,s,N = 1/|N |.
Therefore (P, s) is aD∆-pair if and only if the group 〈Ps〉 does not have any nontrivial
normal p′-subgroup. The result follows.

5. The functor FT∆

By [2], the simple diagonal p-permutation functors are parametrized by the pairs
(G, V ) where G is a finite group and V is a simple E∆(G)-module. Note that this
implies E∆(G) 6= 0.

For a simple E∆(G)-module V , we define two functors in Fpp∆
k by:

LG,V (H) := FT∆(H,G)⊗E∆(G) V

and

JG,V (H) :=

{∑
i

φi ⊗ vi ∈ LG,V : ∀ψ ∈ FT∆(G,H),
∑
i

(ψ ◦ φi) · vi = 0

}
,

for any finite group H. The action of morphisms in Fpp∆
k on these evaluations is

given by left composition. The functor JG,V is the unique maximal subfunctor of
LG,V , so the quotient

SG,V := LG,V /JG,V

is a simple functor [2].
Let FT∆ : Fpp∆

k → F-Mod be the functor given by

• FT∆(G) := F⊗Z T (G) = FT (G),

• FT∆(X) : FT (G)→ FT (H),M 7→ X ⊗kH M for any X ∈ FT∆(H,G).

For any kG-module X, we denote by X̃ the (kG, kG)-bimodule k(G×X) where the
action of kG-kG is given by

a · (g, x) · b−1 := (agb, b−1x)

12



for all a, b, g ∈ G and x ∈ X. We have an isomorphism of (kG, kG)-bimodules

X̃ ∼= IndG×G
op

δ(G) Iso(δ)(X)

where δ : G→ G×Gop, g 7→ (g, g−1). See [7, Definition 2.5.17]. Note that the image
δ(G) of G in G × Gop is a twisted diagonal subgroup. If X is an indecomposable
p-permutation kG-module with a vertex Q, then any vertex of an indecomposable
direct summand of X̃ is contained in δ(Q), up to conjugation. Therefore for any

X ∈ FT (G) we have X̃ ∈ FT∆(G,G).

Lemma 5.1. Let F be a subfunctor of FT∆. Then for any finite group G, the
F-vector space F (G) is an ideal of the algebra FT∆(G) of p-permutation modules.

Proof. Let Y ∈ F (G) and assume X is a p-permutation kG-module. By [7, Propo-

sition 2.5.18] we have an isomorphism X ⊗k Y ∼= X̃ ⊗kG Y of kG-modules. Since

X̃ ∈ FT∆(G,G) and F is a functor, we have X̃ ⊗kG Y ∈ F (G). This shows that
F (G) is an ideal of FT∆(G).

Definition 5.2. For any pair (P, s) let eP,s denote the subfunctor of FT∆ generated

by the idempotent F
〈Ps〉
P,s ∈ FT∆

(
〈Ps〉

)
.

Proposition 5.3. Let F be a subfunctor of FT∆. Then we have

F =
∑

eP,s6F

eP,s.

Proof. Since F is a subfunctor, we have∑
eP,s6F

eP,s 6 F.

Now let G be a finite group, and u =
∑

(P,s) λP,sF
G
P,s, where (P, s) runs in a set

of representatives of G-conjugacy classes of QG,p, and λP,s ∈ F. Then FG
P,s · u =

λP,sF
G
P,s ∈ F (G), since F (G) is an ideal of FT∆(G). Hence FG

P,s ∈ F (G) if λP,s 6= 0.

In this case we have ResG〈Ps〉F
G
P,s ∈ F

(
〈Ps〉

)
, which implies by Lemma 4.1 that

F
〈Ps〉
P,s ∈ F

(
〈Ps〉

)
. This shows that eP,s 6 F . By Lemma 4.1 again, FG

P,s is a non zero

scalar multiple of IndG〈Ps〉F
〈Ps〉
P,s , so FG

P,s ∈ eP,s(G), which gives finally

u ∈
∑

eP,s6F

eP,s(G).
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Therefore we have
F =

∑
eP,s6F

eP,s

as desired.

Proposition 5.4. Let (Pi, si)i∈I be a set of pairs for an indexing set I. Then for
any pair (Q, t) we have eQ,t 6

∑
i∈I ePi,si if and only if eQ,t 6 ePi,si for some i ∈ I.

Proof. If eQ,t 6 ePi,si for some i ∈ I, then we obviously have eQ,t 6
∑

i∈I ePi,si .
Conversely assume we have eQ,t 6

∑
i∈I ePi,si . Then eQ,t

(
〈Qt〉

)
6
∑

i∈I ePi,si

(
〈Qt〉

)
and so F

〈Qt〉
Q,t ∈

∑
i∈I ePi,si

(
〈Qt〉

)
. Since F

〈Qt〉
Q,t is a primitive idempotent and since

ePi,si

(
〈Qt〉

)
is an ideal of FT∆

(
〈Qt〉

)
it follows that we have F

〈Qt〉
Q,t ∈ ePi,si

(
〈Qt〉

)
for

some i ∈ I and hence eQ,t 6 ePi,si .

Let G be a finite group and (P, s) ∈ QG,p be a pair such that G = 〈Ps〉. Let
also (Q, t) ∈ Q∆

H×G,p for a finite group H. Suppose that η : p1(Q) → p2(Q) is the
canonical isomorphism. Up to conjugation in H ×G, we can assume t = (u, sj). By
[7, Section 3.2] if p2(〈Qt〉) 6= G, then the product FH×G

Q,t ⊗kG FG
P,s is zero. So assume

that we have p2(〈Qt〉) = G. This implies that we have p2(Q) = P and |sj| = |s|.
Then since k1(Q) = k2(Q) = 1, this implies that we have p1(Q) ∼= P . Since the
group Q is t-stable, the isomorphism η : p1(Q) → P commutes with conjugations
by u and sj. Now [7, Equation (3.3), Section 3.2] implies that as kH-module the
product FH×G

Q,t ⊗kG FG
P,s is equal to

1

|CNH×G
(Q)(t)||CG(s)|

∑
ϕ∈〈t〉
ψ∈〈s〉

ϕ|u|ψj|u|=1

ϕ̃(t)−1ψ̃(s)−1|CQ(t)|
∑

J6p1(Q)
Ju=J

σ(J)IndH〈Ju〉(k
〈p1(Q)u〉
〈Ju〉,φ )

where σ(J) :=
∑

L6P
Ls=L
η(J)=L

|CL(s)|µ
(
(L, P )s

)
and φ(u) := ϕ(u, sj)ψ(s)j.

Suppose we have H = 〈P ′s′〉 for a pair (P ′, s′). Then by [7, Lemma 2.7.6] if
τHP ′,s′(F

H×G
Q,t ⊗kG FG

P,s) 6= 0, then we must have p1(Q) = P ′ and |u| = |s′|. This
implies in particular that we must have P ′ ∼= P . Moreover again by [7, Lemma 2.7.6]

we have τHP ′,s′
(
IndH〈Ju〉(k

〈p1(Q)u〉
〈Ju〉,φ )

)
= 0 if J 6= P ′. Therefore if we have P ′ ∼= P then

τHP ′,s′(F
H×G
Q,t ⊗kG FG

P,s) is equal to

1

|CNH×G
(Q)(t)||CG(s)|

∑
ϕ∈〈t〉
ψ∈〈s〉

ϕ|u|ψj|u|=1

ϕ̃(t)−1ψ̃(s)−1|CQ(t)||CP (s)|φ̃(s′).
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This shows that if we have FT∆
(
〈P ′s′〉, 〈Ps〉

)
⊗k〈Ps〉 F 〈Ps〉P,s 6= 0, then there is

an isomorphism η : P ′ → P and a p′-element (u, sj) ∈ 〈P ′s′〉 × 〈Ps〉 such that
η◦cu = csj ◦η and |u| = |s′|, |sj| = |s|. In that case, assume further that C〈s〉(P ) = 1.
Then we have |cs| = |s| and |csj | = |sj|. Since we have η ◦ cu = csj ◦ η it follows
that |cu| = |csj |. Therefore we have |s| | |s′|. But then [7, Proposition 2.3.6] implies
that there is a surjective group homomorphism η : 〈P ′s′〉 → 〈Ps〉 that induces an
isomorphism of pairs

(
P ′ ker(η)/ ker(η), s′ ker(η)

)
' (P, s). Note that since |P ′| = |P |

the order of ker(η) is coprime to p. We have the following:

Lemma 5.5. Let (P, s) be a pair with C〈s〉(P ) = 1 and set G := 〈Ps〉. Let H be a
finite group. The following statements are equivalent:

(i) FT∆(H,G)⊗kG FG
P,s 6= 0.

(ii) There exists a pair (P ′, s′) contained in H such that the pair (P, s) is isomorphic
to a p′-quotient of the pair (P ′, s′), that is, there exists a normal p′-subgroup K
of 〈P ′s′〉 such that (P, s) ' (P ′K/K, s′K).

Proof. (i)⇒ (ii) Suppose we have FT∆(H,G)⊗kG FG
P,s 6= 0. Then there exists a pair

(P ′, s′) in H such that
FH
P ′,s′ ∈ FT∆(H,G)⊗kG FG

P,s.

Via the restriction map this implies that we have

F
〈P ′s′〉
P ′,s′ ∈ FT∆

(
〈P ′s′〉, G

)
⊗kG FG

P,s.

Therefore by the argument above we have an isomorphism (P ′K/K, s′K) ' (P, s) of
pairs where K is a normal p′-subgroup of 〈P ′s′〉.
(ii) ⇒ (i) Suppose Φ : (P ′K/K, s′K) → (P, s) is an isomorphism of pairs where K
is a normal p′-subgroup of 〈P ′s′〉. Then we have

IndH〈P ′s′〉Inf
〈P ′s′〉
〈P ′s′〉/KIso(Φ)FG

P,s 6= 0.

This shows (i).

Proposition 5.6. Let (P, s) be a pair. The following are equivalent:

(i) (P, s) is a D∆-pair, that is, for any nontrivial normal p′-subgroup N of 〈Ps〉,
we have Def

〈Ps〉
〈Ps〉/NF

〈Ps〉
P,s = 0.

(ii) For any finite group H with |H| < |〈Ps〉|, we have eP,s(H) = {0}.
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(iii) If H is a finite group with eP,s(H) 6= {0}, then the pair (P, s) is isomorphic to
a p′-quotient of a pair (P ′, s′) contained in H.

(iv) The group 〈Ps〉 does not have any nontrivial normal p′-subgroup.

(v) We have C〈s〉(P ) = 1.

Proof. (v)⇔(iv)⇔(i) : This follows from Lemma 4.5.
(i)⇒ (iii): Since (P, s) is a D∆-pair, we have C〈s〉(P ) = 1. So (iii) follows from
Lemma 5.5.
(iii)⇒ (ii): Assume that (iii) holds and eP,s(H) 6= 0 where H is a finite group
with |H| < |〈Ps〉|. Then by the assumption, we have |H| ≥ |〈P ′s′〉| ≥ |〈Ps〉|.
Contradiction.
(ii)⇒ (i): Clear.

Proposition 5.7. Let (P, s) and (Q, t) be two pairs.

(i) If (Q, t) is isomorphic to a p′-quotient of (P, s), then eP,s = eQ,t.

(ii) If (Q, t) is a D∆-pair, and if eP,s 6 eQ,t, then (Q, t) is isomorphic to a p′-
quotient of (P, s).

Proof. (i) Assume we have an isomorphism φ : (PK/K, sK) → (Q, t) of pairs for
some normal p′-subgroup K of 〈Ps〉. Then

F
〈Ps〉
P,s ⊗k Inf

〈Ps〉
〈Ps〉/KIso(φ−1)F

〈Qt〉
Q,t 6= 0.

Therefore F
〈Ps〉
P,s ∈ eQ,t

(
〈Ps〉

)
which implies that eP,s 6 eQ,t.

Now we also have

F
〈Qt〉
Q,t ⊗k Iso(φ)Def

〈Ps〉
〈Ps〉/KF

〈Ps〉
P,s 6= 0

which implies that F
〈Qt〉
Q,t ∈ eP,s

(
〈Qt〉

)
. Therefore eQ,t 6 eP,s and so eQ,t = eP,s as

desired.
(ii) Since eP,s 6 eQ,t, we have F

〈Ps〉
P,s ∈ eQ,t

(
〈Ps〉

)
. Since (Q, t) is a D∆-pair, by

the proof of Lemma 5.5, there exists a normal p′-subgroup K of 〈Ps〉 such that
(Q, t) ' (PK/K, sK).
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Proposition 5.8. Let F be a nonzero subfunctor of FT∆. If H is a minimal group
of F , then H = 〈Qt〉 for some D∆-pair (Q, t). Moreover

F (H) 6
⊕

(Q′,t′),D∆−pair
〈Q′t′〉=H

FFH
Q′,t′

and eQ,t 6 F .
In particular, if F = eQ,t for some D∆-pair (Q, t), then

eQ,t
(
〈Qt〉

)
=

⊕
(Q′,t′)'(Q,t)
〈Q′t′〉=〈Qt〉

FFH
Q′,t′ .

Proof. Let F be a nonzero subfunctor of FT∆ and assume H is a minimal group
of F . Since F (H) 6= 0, there exists a pair (Q, t) ∈ QH,p such that FH

Q,t ∈ F (H).

This implies, via the restriction map, that F
〈Qt〉
Q,t ∈ F

(
〈Qt〉

)
. Since H is a minimal

group, this implies that H = 〈Qt〉. Now if N is a normal p′-subgroup of 〈Qt〉, then

Def
〈Qt〉
〈Qt〉/NF

〈Qt〉
Q,t = 1

|N |F
〈Qt〉/N
QN/N,tN 6= 0. Again since H is a minimal group this means

that N is trivial and hence the pair (Q, t) is a D∆-pair. It follows moreover that

F (H) 6
⊕

(Q′,t′),D∆−pair
〈Q′t′〉=H

FFH
Q′,t′ .

For the last part, consider the functor eQ,t for some D∆-pair (Q, t). If F
〈Qt〉
Q′,t′ ∈

eQ,t
(
〈Qt〉

)
for some D∆-pair (Q′, t′), then by the second part of Proposition 5.7, the

pair (Q, t) is isomorphic to a p′-quotient of the pair (Q′, t′). But the pair (Q′, t′) is
contained in 〈Qt〉. Thus (Q′, t′) ' (Q, t).
Conversely, if the pairs (Q′, t′) and (Q, t) are isomorphic via a map φ, then we have

F
〈Qt〉
Q′,t′ = Iso(φ)F

〈Qt〉
Q,t . Therefore

eQ,t
(
〈Qt〉

)
=

⊕
(Q′,t′)'(Q,t)
〈Q′t′〉=〈Qt〉

FFH
Q′,t′ .

Let (P, s) be a pair andN a normal p′-subgroup of 〈Ps〉. Then the pair (PN/N, sN)
is a p′-quotient of the pair (P, s) and so by Proposition 5.7 we have eP,s = ePN/N,sN .
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Proposition 5.9. Let (P, s) be a pair. Then the group 〈Ps〉/C〈s〉(P ) is the unique,
up to isomorphism, minimal group of the functor eP,s. Moreover there is a unique
isomorphism class of D∆-pairs (P ′, s′) such that 〈P ′s′〉 ∼= 〈Ps〉/C〈s〉(P ) and we have
eP ′,s′ = eP,s. Furthermore we have (P ′, s′) '

(
PC〈s〉(P )/C〈s〉(P ), sC〈s〉(P )

)
.

Proof. Let (P ′, s′) be a D∆-pair such that 〈P ′s′〉 is a minimal group of the functor
eP,s. By Proposition 5.8, we have eP ′,s′ 6 eP,s. Let N := C〈s〉(P ). Then the pair
(PN/N, sN) is a D∆-pair, and we have eP,s = ePN/N,sN . Since (PN/N, sN) is a
D∆-pair, by Proposition 5.7 there exists a normal p′-subgroup K of 〈P ′s′〉 such that

(P ′K/K, s′K) ' (PN/N, sN). This means that the idempotent F
〈P ′s′〉/K
P ′K/K,s′K is in

the evaluation at 〈P ′s′〉/K of the functor ePN/N,sN = eP,s. Since the group 〈P ′s′〉
is a minimal group of eP,s it follows that we must have K = 1. Thus we have
(P ′, s′) ' (PN/N, sN). Therefore we have eP ′,s′ = ePN/N,sN = eP,s.

Now we will show the uniqueness of the isomorphism class of the minimal groups
of eP,s. Let H be a minimal group of eP,s. It suffices to show that H is isomorphic
to 〈P ′s′〉. By Proposition 5.8 the group H is of the form H = 〈Qt〉 for some D∆-pair
(Q, t). By the first part of the proof we have eQ,t = eP,s = eP ′,s′ . Since both (Q, t)
and (P, s) are D∆-pairs, the equality eQ,t = eP ′,s′ implies that (Q, t) is isomorphic
to a p′-quotient of (P, s), and vice versa. Therefore we have (Q, t) ' (P ′, s′) which
implies that H = 〈Qt〉 ∼= 〈P ′s′〉 as desired.

For any pair (P, s) we denote by (P̃ , s̃) a representative of the isomorphism class
of the pair (PC〈s〉(P )/C〈s〉(P ), sC〈s〉(P )).

Theorem 5.10. Let (P, s) be a pair.

(i) If (Q, t) is isomorphic to a p′-quotient of (P, s) and if (Q, t) is a D∆-pair,
then (Q, t) is isomorphic to the pair (P̃ , s̃). In particular, for any normal p′-
subgroup N E 〈Ps〉, we have (PN/N, sN) ' (P̃ , s̃) if and only if (PN/N, sN)
is a D∆-pair.

(ii) Let N E 〈Ps〉 be a normal p′-subgroup. Then the pair (P̃ , s̃) is isomorphic to a

p′-quotient of (PN/N, sN) and we have (P̃ , s̃) ' (P̃N/N, s̃N).

Proof. (i) Since the pair (Q, t) is isomorphic to a p′-quotient of the pair (P, s), by
Proposition 5.7, we have eP̃ ,s̃ = eP,s 6 eQ,t. Since (Q, t) is a D∆-pair, again by

Proposition 5.7, the pair (Q, t) is isomorphic to a p′-quotient of (P̃ , s̃). But since
the pair (P̃ , s̃) is a D∆-pair, it follows that the pair (Q, t) is isomorphic to the pair
(P̃ , s̃).
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(ii) Since the constant mP,s,N is non-zero, we have F
〈Ps〉/N
PN/N,sN ∈ eP,s

(
〈Ps〉/N

)
=

eP̃ ,s̃
(
〈Ps〉/N

)
. Therefore we have ePN/N,sN 6 eP̃ ,s̃ and since (P̃ , s̃) is a D∆-pair, by

Proposition 5.7, (P̃ , s̃) is isomorphic to a p′-quotient of (PN/N, sN). Again since

the pair (P̃ , s̃) is a D∆-pair, by part (i), it is isomorphic to the pair (P̃N/N, s̃N).

Let [D∆-pair] denote a set of isomorphism classes of D∆-pairs. Then the sub-
functor lattice of the functor FT∆ is isomorphic to the lattice of subsets of the set
[D∆-pair] ordered by inclusion.

Theorem 5.11. Let S be the lattice of subfunctors of FT∆ ordered by inclusion
of subfunctors. Let T be the lattice of subsets of [D∆-pair] ordered by inclusion of
subsets. Then the map

Θ : S → T

that sends a subfunctor F to the set {(P, s) ∈ [D∆-pair] : eP,s 6 F}, is an isomor-
phism of lattices with inverse

Ψ : T → S

that sends a subset A to the functor
∑

(P,s)∈A eP,s.

Proof. We need to show that the maps Θ and Ψ are inverse of each other. Let F ∈ S
be a subfunctor. By Proposition 5.3 we have

F =
∑

(P,s)∈Γ
eP,s6F

eP,s

where Γ is a set of representatives of the isomorphism classes of pairs. But for any
pair (P, s) we have eP,s = eP̃ ,s̃ and (P̃ , s̃) is a D∆-pair. Therefore we have

F =
∑

(P,s)∈[D∆-pair]
eP,s6F

eP,s.

This shows that Ψ(Θ(F )) = F .
Now let A ∈ T be a subset and let (Q, t) ∈ Θ(Ψ(A)) be a D∆-pair. Then

we have eQ,t 6
∑

(P,s)∈A eP,s and so by Proposition 5.4 this implies that we have

eQ,t 6 eP,s for some (P, s) ∈ A. Since both (P, s) and (Q, t) are D∆-pairs, it follows
that (P, s) ' (Q, t) and hence (Q, t) ∈ A. This shows that Θ(Ψ(A)) ⊆ A. The
inclusion A ⊆ Θ(Ψ(A)) is trivial. Therefore we have Θ(Ψ(A)) = A.
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The following corollary follows immediately from Theorem 5.11.

Corollary 5.12. We have FT∆ =
⊕

(P,s)∈[D∆-pair] eP,s.

The first statement of Proposition 5.8 can also be made stronger.

Corollary 5.13. Let F be a nonzero subfunctor of FT∆. If H is a minimal group
of F , then H = 〈Qt〉 for some D∆-pair (Q, t) and we have

F (H) =
⊕

(Q′,t′)'(Q,t)
〈Q′t′〉=〈Qt〉

FFH
Q′,t′ .

Proof. Since H is a minimal group of F , by Proposition 5.8 it follows that H = 〈Qt〉
for some D∆-pair with the property that eQ,t 6 F . By Theorem 5.11 we have

F =
∑

(Q,t)∈[D∆-pair]
eQ,t6F

eQ,t.

Therefore by Proposition 5.8 again we have

F (H) = eQ,t(H) =
⊕

(Q′,t′)'(Q,t)
〈Q′t′〉=〈Qt〉

FFH
Q′,t′

as desired.

Theorem 5.14. (i) Let (P, s) be a D∆-pair. Then the subfunctor eP,s of FT∆ is

isomorphic to the simple functor S〈Ps〉,WP,s
where WP,s = ⊕(Q,t)'(P,s)

〈Qt〉=〈Ps〉
FF 〈Ps〉P,s .

(ii) Let (P, s) and (Q, t) be D∆-pairs. Then the functor eP,s and eQ,t are isomorphic
if and only if the pairs (P, s) and (Q, t) are isomorphic, that is, if and only if
eP,s = eQ,t as subfunctors of FT∆.

(iii) The functor FT∆ is semisimple. More precisely

FT∆ ∼=
⊕
(P,s)

S〈Ps〉,WP,s
,

where (P, s) runs through a set of representatives of isomorphism classes of
D∆-pairs.
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Proof. (i) By Theorem 5.11 the lattice of subfunctors of eP,s is isomorphic to the
lattice of subsets of the set Θ(eP,s) = {(Q, t) ∈ [D∆-pair] : eQ,t 6 eP,s} = {(P, s)}.
Therefore the subfunctor eP,s is simple. By Proposition 5.9 the group 〈Ps〉 is a
minimal group of the functor eP,s. By Proposition 5.8 we have eP,s

(
〈Ps〉

)
= WP,s.

Moreover, by [7, Theorem 4.2.5], the module WP,s is a simple module for the essential
algebra E∆

(
〈Ps〉

)
. Thus we have eP,s ' S〈Ps〉,WP,s

as desired.

(ii) Clearly if (P, s) ' (Q, t), then eP,s = eQ,t as subfunctors of FT∆. In particular
eP,s ∼= eQ,t. Conversely, if eP,s ∼= eQ,t, then eP,s and eQ,t have the same minimal
groups, so (P, s) ' (Q, t) by Proposition 5.9.

(iii) By Assertion (i), this is just a reformulation of Corollary 5.12.

Proposition 5.15. Let (P, s) be a pair. Then for any finite group H, the F-vector
space eP,s(H) is the subspace of FT (H) generated by the set of primitive idempotents
FH
Q,t where (Q, t) runs over a set of conjugacy classes of pairs in H with the property

that (P, s) is isomorphic to a p′-quotient of (Q, t).

Proof. Since the pair (P̃ , s̃) is isomorphic to a p′-quotient of the pair (P, s) and since
eP,s = eP̃ ,s̃, we may assume that the pair (P, s) is a D∆-pair. Since eP,s(H) is an

ideal of FT (H), it has a F-basis consisting of a set of primitive idempotents FH
Q,t. If

FH
Q,t ∈ eP,s(H), then F

〈Qt〉
Q,t ∈ eP,s

(
〈Qt〉

)
and so eQ,t 6 eP,s. Since (P, s) is a D∆-pair,

by Proposition 5.7, it is isomorphic to a p′-quotient of the pair (Q, t). Conversely, if
(P, s) is isomorphic to a p′-quotient of the pair (Q, t), then again by Proposition 5.7,

we have eQ,t 6 eP,s. So we have F
〈Qt〉
Q,t ∈ eP,s

(
〈Qt〉

)
and hence FH

Q,t ∈ eP,s(H). The
result follows.

Theorem 5.16. Let (P, s) be a D∆-pair. Then for any finite group H, the F-
dimension of S〈Ps〉,WP,s

(H) is equal to the number of conjugacy classes of pairs (Q, t)

in H such that (Q̃, t̃) ' (P, s).

Proof. By Proposition 5.15, eP,s(H) is generated by the idempotents FH
Q,t where

(Q, t) is a pair in H with the property that the pair (P̃ , s̃) ' (P, s) is isomorphic to
a p′-quotient of the pair (Q, t). Since (P, s) is a D∆-pair, Theorem 5.10 implies that
(Q̃, t̃) ' (P, s). The result follows.

Corollary 5.17. Let H be a finite group. The F-dimension of S1,F(H) is equal to
the number of isomorphism classes of simple kH-modules.
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Proof. By Theorem 5.16, dimFS1,F(H) is equal to the number of conjugacy classes of
pairs (Q, t) in H such that (Q̃, t̃) ' (1, 1). Suppose (Q, t) is a pair with (Q̃, t̃) ' (1, 1).
Then we have Q̃ = 1 and t̃ = 1. So there exists a normal p′-subgroup N of 〈Qt〉
such that (QN/N, tN) ' (1, 1). Since |Q| and |N | are coprime, this implies that
Q = 1. We also have t ∈ N . But then N E 〈t〉 implies that N = 〈t〉. Therefore the
number of conjugacy classes of pairs (Q, t) in H such that (Q̃, t̃) ' (1, 1) is equal to
the number of conjugacy classes of p′-elements in H. The result follows.

Theorem 5.18. The functor S1,F is isomorphic to the functor that sends a finite
group H to the subspace FK0(kH) of FT∆(H) generated by the projective indecom-
posable kH-modules.

Proof. Let H be a finite group. We have

S1,F(H) = (FT∆(H, 1)⊗F F)/J1,F(H) ∼= FT∆(H, 1)/J1,F(H)

where J1,F(H) = {φ ∈ FT∆(H, 1) : ∀ψ ∈ FT∆(1, H), (ψ ◦φ) ·1 = 0}. Now FT∆(H, 1)
is isomorphic to the subspace FK0(kH) of FT (H) generated by the isomorphism
classes of projective indecomposable kH-modules. Similarly any W ∈ FT∆(1, H)
can be identified with W ∗ ∈ FK0(kH). As in [8] we have the following:
For any p-permutation kH-modules V and W we have

(W ∗ ⊗kH V ) · 1 = dimk(W
∗ ⊗kH V ) = dimk(HomkH(W,V )).

Therefore J1,F(H) is the right kernel of the bilinear form

< −,− >: FK0(kH)→ F

defined as < W,V >:= dimk(HomkH(W,V )). But the matrix that represents this
bilinear form is the Cartan matrix of kH. Since the Cartan matrix of a group algebra
is non-degenerate, it follows that J1,F(H) = 0. Therefore we have

S1,F(H) = FT∆(H, 1)⊗F F ∼= FT∆(H, 1) ∼= FK0(kH).

Note that both of these isomorphisms are functorial in H. The result follows.
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