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Abstract

Let p be a prime number. We consider diagonal p-permutation functors
over a (commutative, unital) ring R in which all prime numbers different
from p are invertible. We first determine the finite groups G for which
the associated essential algebra Eg(G) is non zero: These are groups of the
form G = L(u), where (L,u) is a D®-pair.

When R is an algebraically closed field F of characteristic 0 or p, this
yields a parametrization of the simple diagonal p-permutation functors
over F by triples (L,u, W), where (L,u) is a D®-pair, and W is a sim-
ple FOut(L, u)-module.

Finally, we describe the evaluations of the simple functor Sy, , w para-
metrized by the triple (L, u, W). We show in particular that if G is a finite
group and F has characteristic p, the dimension of Sy 1 #(G) is equal to
the number of conjugacy classes of p-regular elements of G with defect
isomorphic to L.
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1 Introduction

Let k be an algebraically closed field of positive characteristic p, and R be a
commutative ring (with 1). Asin [6] and [7], we consider the following category
category Rppk,A:

e The objects of RppkA are the finite groups.

e For finite groups G and H, the hom set HOmepkA(G, H) is defined as
RTA(H,G) = R®z T*(H,G), where T?(H,G) is the Grothendieck group
of diagonal p-permutation (kH, kG)-bimodules.

e The composition in RppkA is induced by the usual tensor product of bi-
modules.

e The identity morphism of the group G is the class of the (kG, kG)-bimodule
kG.

The category }'R%,pk of diagonal p-permutation functors over R is the category

of R-linear functors from RppkA to the category R-Mod of all R-modules. It is an
abelian category.



In [6] and [7], we mainly considered the case where R is an algebraically closed
field F of characteristic 0. In [7], we showed in particular that the category
fﬁpk is semisimple, and we classified and described its simple objects. For
an arbitrary commutative ring R, we also introduced a new equivalence for
blocks of groups algebras, called functorial equivalence over R, using diagonal p-
permutation functors over R naturally attached to pairs (G,b) of a finite group
G and a block idempotent b of kG. This led us in particular to prove the
following finiteness theorem in the spirit of Donovan’s and Puig’s finiteness
conjectures: For a given finite p-group D, there is only a finite number of pairs
(G, b) of a finite group G and a block idempotent b of kG, with defect isomorphic
to D, up to functorial equivalence over F. We also showed that important
invariants of blocks (like the number of simple modules or the number of ordinary
irreducible characters) are preserved by functorial equivalence over F, and we
gave a characterization of nilpotent blocks in terms of functorial equivalence.

A natural question is then to see what happens when R is a field of positive
characteristic, in particular when R = k. An additional motivation for consider-
ing this case is that there are diagonal p-permutation functors attached to blocks,
which vanish when considered over F, but are of a fundamental interest when
defined over k: For example, the Hochschild cohomology functors, sending a pair
(G, b) as above to the i-th Hochschild cohomology group H H'(kGb, kGb) (or its
k-dual, isomorphic to the i-th Hochschild homology group H H;(kGb, kGb)). Let
us mention here a question raised by Linckelmann ([11]): If b has non-trivial

defect, is it true that HH'(kGb, kGb) # 0?

This paper is a first step in the study of diagonal p-permutation functors in
characteristic p, and we focus on simple functors. The main result we obtain
(Theorem 5.25) is a parametrization and a description of these objects. In
particular, we show how to compute the evaluations of such simple functors.

A key ingredient to the parametrization and description of simple functors
is the essential algebra Er(G) of a group G, namely the quotient of the endo-
morphism algebra RT*(G, G) of G in the category RppkA by the ideal of linear
combinations of endomorphisms which factor through a group of order strictly
smaller than |G|. We first find some conditions on G (Corollary 3.4, Theo-
rem 3.6, Theorem 3.7) for the (non-)vanishing of &g(G). In particular, if any
prime number different from p is invertible in R, we show (Corollary 3.8) that
Er(G) is non zero if and only if G is a semidirect product L x (u) (which we de-
note by L{u)), where (L, u) is a D®-pair, that is a pair of a finite p-group L and
a p’-automorphism u of L (Definition 3.9). Moreover, we describe completely
(Theorem 4.9) the structure of the algebra Eg(G) in this case.

In Section 5, we study simple diagonal p-permutation functors, so we assume
that R is a field F of characteristic 0 or p. Applying the results of the previous
sections, we know that if .S is a simple diagonal p-permutation functor over F,
then a minimal group for S is of the form L(u), where (L,u) is a D®-pair, and
the evaluation V' = S(L(u)) is a simple Er(L(u))-module. Conversely, to any



triple (L,u, V), where (L,u) is a D®-pair and V is a simple &r(L(u))-module,
we associate a simple functor Sy, y with minimal group L(u), and such that
SLiuy,v (L(u)) = V. Then we compute (Theorem 5.23) the evaluation Sty (G)
at an arbitrary finite group G.

The precise structure of the essential algebra given by Theorem 4.9 now
allows for another parametrization of the simple functors, namely by triples
(L,u, W), where (L, u) is a D®-pair and W is a simple module for the algebra
FOut(L, w)-module of the group Out(L,u) (Notation 3.10) of outer automor-
phisms of (L,u). In Theorem 5.25, we describe the evaluations of the simple
functor Sg,,, w parametrized by such a triple (L, u, W).

Section 6 is devoted to some examples: First the simple functor 57 1 r, which
turns out to be closely related to the Cartan map (Lemma 6.2, Proposition 6.8).
This example shows in particular that the category Fppy, is not semisimple when
[F has characteristic p. Then we describe (Theorem 6.11) the evaluations of the
simple functor Sg,; w. In particular (Corollary 6.14), we show that for a finite
group G, the dimension of Sy, 1 (G) is equal to the number of conjugacy classes
of p’-elements of G with defect isomorphic to L (Definition 6.13).

2 Notation and terminology’
Throughout the paper:

» k is an algebraically closed field of positive characteristic p.
» R is a commutative ring (with 1).

» For a finite group G, we denote by Proj(kG) the group of projective kG-
modules, and by Ry(G) the Grothendieck group of the category of finite
dimensional kG-modules. We set RProj(G) = R ®z Proj(G) and RRy(G) =
R ®z Ri(G).

» If P is a p-subgroup of a finite group G, and M is a kG-module, we denote
by M[P] the Brauer quotient of M at P, and by Brp : MY — M][P] the
projection map. The module M[P] is a kNg(P)-module, where Ng(P) =
Ng(P)/P.

» For a finite group G, a p-permutation kG-module (see [9]) is a direct sum-
mand of a permutation kG-module, i.e. of a module admitting a G-invariant
k-basis. Equivalently, a kG-module M is a p-permutation module if the
restriction Reng of M to a Sylow p-subgroup S of GG is a permutation
kS-module.

» From [9], we know that the indecomposable p-permutation kG-modules (up
to isomorphism) are parametrized by pairs (P, E), where P is a p-subgroup

! An additional list of symbols is included at the end of the paper.



of G, up to conjugation, and E is an indecomposable projective kN g(P)-
module, up to isomorphism. The indecomposable module M (P, E) para-
metrized by the pair (P, E) is the only indecomposable direct summand with
InfYe(P)
Na(P)
summands having vertex strictly contained in P, up to conjugation. The
module M (P, E) has vertex P, and M (P, E)[P] = E as kN g(P)-modules.

vertex P of Lpp = Ind%c( P) E, the other direct indecomposable

It follows that the Grothendieck group of p-permutation kG-modules, for
relations given by direct sum decomposition, has a basis consisting of the
modules Lp g, where P is a p-subgroup of G, up to conjugation, and E is an
indecomposable projective kN g(P)-module.

When G and H are finite groups, and L is a subgroup of H x G, we denote
by p1(L) (resp. p2(L)) the projection of L in H (resp. in G), and we set

ki(Ly={he H|(h,1) € L} and ko(L)={9€ G| (1,9) € L}.
We say that L is diagonal if k1(L) = ko(L) = 1. Equivalently,
L=AY,r,X)={(r(z),2) |z e X},

where X is a subgroup of G and 7 : X — Y is a group isomorphism from
X to a subgroup Y of H. If X =Y and 7 = Id, we simply write A(X) =
A(X,1d, X). For X < G and an embedding ¢ : X — H, we also write
Ay(X) instead of A(¥(X), 9, X).

For finite groups G and H, a p-permutation (kH, kG)-bimodule is a (kH, kG)-
bimodule which is a p-permutation module when viewed as a k(H x G)-
module. A p-permutation (kH,kG)-bimodule M is diagonal if in addition
M is projective when viewed as a left kH-module and a right kG-module.
Equivalently M is a p-permutation (kH, kG)-bimodule, and all the vertices
of the indecomposable summands of M are diagonal p-subgroups of H x G.

For finite groups G and H, we denote by T2 (H, G) the Grothendieck group of
diagonal p-permutation (kH, kG)-bimodules, for relations given by direct sum
decomposition. We set RT*(H,G) = R @z T?(H,G). The group T2 (H,G)
has a basis consisting of the bimodules of the form

HxG Ngxa(P)
IndNHxG(P)IanHXc(P)E7

where P is a diagonal p-subgroup of H x G (up to conjugation), and F is an
indecomposable projective N g (P)-module.

When G, H, and K are finite groups, if M is a diagonal p-permutation
(kG, kH)-bimodule and N is a diagonal p-permutation (kK,kH )-bimodule,
then N ®yy M is a diagonal p-permutation (kK, kG)-bimodule. This induces
a well defined bilinear map

TA(K,H) x TA(H,G) — TA(K,Q),
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still denoted (v,u) + v @k u. This bilinear map is also the composition in
the category Rm)kA of the introduction, so it will be sometimes denoted by
(v,u) — vou.

» For finite groups G and H, we say that an element u € RT A(G,H ) is right
essential (resp. left essential) if it cannot be factored through groups of
order strictly smaller than |H| (resp. of order strictly smaller than |G|), that
isifu¢ S RTAG,K)oRTA(K,H) (resp. ifu¢ > RTAG,K)o

|K|<|H| |K[<|G|
RTA(K,H)). A (kG,kH)-bimodule M is called right essential over R - or
simply right essential - (resp. left essential) if the element M of RT>(G, H)
is right essential (resp. left essential).

If |G| = |H|, being left essential is equivalent to being right essential, so we
simply say essential.

» In particular, for a finite group G, the endomorphism algebra of G in the
category Rm)kA is RT2(G,G). The essential algebra (over R) of G is the
quotient

Er(G) =RT™(G,G)/ > RT*(G,H)oRT*(H,G)
|H|<|G|

of RTA(G,G) by the (two sided) ideal of non-essential elements. We denote
by u — er(u) the projection map RT2(G,G) — Er(G).

» The main reason for considering the previous essential algebra is the follow-
ing: By standard results (see e.g. [5], Lemma 2.5 and Proposition 2.7), if
S is a simple diagonal p-permutation functor over R, and if G is a group
such that V := S(G) # 0, then V is a simple RT*(G, G)-module, and S is
isomorphic to the unique simple quotient Sy of the functor Lgy : H —
RTA(H, G)®grra(g,q)V- Moreover, if G is a group of minimal order such that
S(G) # 0, then in fact V is a simple Er(G)-module, and S = Sgy. So we
are looking for pairs (G, V) of a finite group G and a simple Egr(G)-module.
In particular, for such a pair, the essential algebra Er(G) is non-zero.

» An elementary group (or Brauer elementary group) is a finite group of the
form @ x C, where @) is a g-group for some prime number ¢, and C'is a cyclic
group (that can be assumed of order prime to ¢). When p is a prime number,
an elementary p’-group is an elementary group of order prime to p.

3 Vanishing of &(G)

Let G be a finite group. We want to know when the essential algebra Eg(G) is
non-zero. We start with some classical lemmas.

Lemma 3.1: Let G = P x K, where P and K are finite groups of coprime
order. Let moreover ¢ be an automorphism of G. Then:



1. o(P)=P.
2. Cq(P)=Z(P)Ck(P).

3. Suppose that Cq(P) = Z(P), or equivalently by Assertion 2, that K acts
faithfully on P. Then the following are equivalent:

(a) The restriction of ¢ to P is the identity.

(b) @ is an inner automorphism iy, of G, for some w € Z(P).

Proof: 1. This is clear, since P is the set of elements of G of order dividing the
order of P.

2. The inclusion Z(P)Ck(P) < Cg(P) is clear. Conversely, if zt € Cq(P),
where z € P and t € K, then 'y = y* for any y € P. It follows that "y = y*"
for any n € N and any y € P. Taking n = |z| gives t" € Ck(P), hence
t € Cx(P) since (n,|t|]) = 1. Then z € Cp(P) = Z(P).

3. It is clear that (b) implies (a)?. For the converse, assume that (a) holds, and
that Cq(P) = Z(P). Let z,y € P and s,t € K. Then

plzs-yt) = p(z
= p(z8)p(yt) = zp(s)yp(t) = ¥y o(s)p(t).

Hence *y = ¢()y for any y € P. In other words z(s) := s 'p(s) € Cq(P), so z
is a map from K to Z(P).

Now ¢(s) = sz(s), so z(st) = z(s)! 2(t) for any s,t € K. In other words,
the map z is a crossed morphism from K to Z(P). Since K and Z(P) have
coprime order, it follows that there exists w € Z(P) such that z(s) = w® - w1,
for any s € K. In other words ¢(s) = s-w®-w™! = wsw™ = i,(s). Since

iw(x) =2 = p(x) for any z € P, it follows that ¢ = iy,. 0

Lemma 3.2: Let G be a finite group, and P be a normal p-subgroup of G.
Then:

1. Nexa(A(P)) ={(a,b) € G x G |ab~! € Cu(P)}.

2. Set N = Ngxa(A(P)) and N = N/A(P). There is an isomorphism of
(kG, kG)-bimodules

kG = Ind§*“InfNkCe(P),

where the action of N on kCq(P) is given by (a,b)A(P) -~ = ayb~!.

2and we don’t need the assumption Cg(P) = Z(P) for that. ..



Proof: 1. This is clear, since (a,b) € N if and only if 2% = 2, i.e. R —

for all x € P.

2. The group N permutes the set Cg(P) transitively, and the stabilizer in
of 1 € Cg(P) is the group {(a,a)A(P) | a € G} = A(G)/A(P). So kCq(P)

R =

IHdX(G)/A(p) ka and
Ind{*“InfThCe (P) 2 Indg “InfyInd} ) a(p) b

~ GxG A(G
=~ Ind™ Indg(G)Ian( )

(©)/A(P)
= nd§7 5k = kG

k

as (kG, kG)-bimodules. 0

The next step is an important reduction allowed by the following stronger
version of Dress induction theorem, due to Boltje and Kiilshammer ([2], Theorem
3.3):

Theorem 3.3: Let H be a finite group, and U be an indecomposable kH -module
with vertex D and source Z. Then, in the Green ring of kH, we have

n

U] = aillndf Vi),
i=1

where, fori=1,...,n:
® a; 1S an integer.

e H; is a subgroup of H such that D; := O,(H;) < D and H;/D; is an
elementary p'-group.

o V; is an indecomposable kH;-module with vertex D; and source Resgjw,
which is a direct summand of ReSBiZ .

Corollary 3.4: Let G be a finite group. Then Er(G) = 0 unless G =2 P x K,
where P is a p-group, and K is an elementary p'-group.

Proof: We apply Theorem 3.3 to the case H = G x G and U = kGb, where
b is a block idempotent of kG. Then U is a diagonal p-permutation (kG,kG)-
bimodule with diagonal vertex A(D) = A(D,1d, D), where D < G is a defect
group of b. We can conclude that [U] is a linear combination with integer
coefficients of (isomorphism classes of) induced bimodules [IndgiXG%], where
H; is a subgroup of G x G such that D; = O,(H;) < A(D) and H;/O,(H;) is



an elementary p’-group. Let G; be the first projection of H; on G. Then the
bimodule IndgiXGVi factors as

Ind$*CV; = Indi(xgg @k, Indf OV,
where H; on the right hand side is viewed as a subgroup of G; x G. Now if
G; < G, then the image of kGb in Egr(G) is equal to 0. And if G; = G, then
G is a quotient of H;, so G/O,(G) is an elementary p’-group. In other words
G = P x K, where P is a p-group, and K is an elementary p’-group.

Now Er(G) is non zero if and only if its identity element is non zero, that is
if the image of the bimodule £G in Eg(G) is non zero. Since kG is the direct sum
of the bimodules kGb, when b runs through block idempotents of kG, there is
at least one such idempotent b such that the image of kGb in Eg(G) is non-zero.
Hence G = P x K, where P is a p-group and K is an elementary p’-group. 0O

Lemma 3.5: Let G = P x K, where P is a finite p-group, and K is an elemen-
tary p’-group. Let H be a finite group, and U be a right essential indecomposable
diagonal p-permutation (kG,kH)-bimodule. Then:

1. The essential algebra Eg(H) is non-zero. In particular H = Q x L, where
Q is a p-group and L is an elementary p’-group.

2. There exist an injective group homomorphism 7 : Q — P, a subgroup T
of NKxL(Aﬂ(Q)) with po(T) = L, and a simple kT-module W such that

(@)T

U= md ) it @

@)
as (kG, kH)-bimodules.

Proof: 1. If &g(H) = 0, the identity (kH,kH)-bimodule kH factors through
groups of order stritcly smaller than |H|, so the same holds for U (by right
composition with kH). Hence Eg(H) # 0, and Assertion 1 follows from Corol-
lary 3.4.

2. From Assertion 1 follows in particular that the group G x H is solvable,
with a normal Sylow p-subgroup P x (). Then there is a diagonal p-subgroup
Ar(S) of G x H, where S is a p-subgroup of H (that is, a subgroup of @) and
w: S < P is an injective group homomorphism, such that

U = Ind "IN E,

where N = Ngyxu(Ar(S)) and N = N/A(S), and E is an indecomposable
projective kN-module.

Now N itself also has a normal Sylow p-subgroup X, and there is a p'-
subgroup T of N such that N = X x T. Moreover T lifts to a p’-subgroup 71" of



N, that we can assume contained in the p’-Hall subgroup K X L of G x H, up
to replacing A (S) by a conjugate subgroup. Finally F = Ind%W, where W is
a simple kT-module. Let W be the simple kT-module corresponding to W via
the isomorphism T = T'. It follows that

U 2 Ind§ M nfNmd¥ W
o IndGXHIndgﬁ (s mfr™ ST

A
A () rnfr

Since U is right essential, we have po (Aﬁ(S) ~T) = H = @ - L. This forces
S =@, and po(T') = L, proving Assertion 2. 0

Theorem 3.6: Let G be a finite group of the form G = P x K, where P is a
p-group and K is a non-cyclic elementary p'-group. Then |K|>Er(G) = 0. In
particular, if | K| is invertible in R, then Er(G) = 0.

Proof: Let M be an essential indecomposable diagonal p-permutation (kG, kG)-
bimodule. By Lemma 3.5, applied to H = G and U = M, we know that

M = d$*G, Anfpe Ty,

for some 7 € Aut(P), some subgroup T of NKxK(AW(P)) with po(T') = K, and
some simple kT-module W.

Now T < K x K, so T is a p'-group, and |T| divides |K|?. Moreover by
Artin’s induction theorem, in Ry(T") = Rc(T'), we have an equality of the form

n
TIW =" niIndf, ky,,
=1

where, for 1 <i <n, C; is a cyclic subgroup of T', n; is an integer, and k), is a
one dimensional kC;-module. Hence in RT?(G, G), we have that

IT|M = anlndixgg AnfR T IndZ ky,

_ GxG w(P)T 1 eAx(P)-Ci
ZnZIndAX(P ndy" () Infg; ko,

= Z nZIndgx(GP Infé:(P)'Cik:Ai.



The image of |K|> M in Er(G) is equal to the image of
G><G Ar(P)-C;
‘T’ Z nd3G o, Infe; Fxss

which is equal to zero unless there exists ¢ € {1,...,n} such that

This implies that K is a quotient of C;. Hence K is cyclic, which completes the
proof. O

Theorem 3.7: Let G = Px K, where P is a p-group and K is a cyclic p'-group.
If Cx(P) # 1, then Er(G) = 0.

Proof: 3 Since G has a normal Sylow p-subgroup, all the blocks of G have defect
P. Moreover, if b is a block idempotent of G, then b is a linear combination of
p-regular elements of Cq(P) = Z(P) x Ck(P), so b € kCk(P).

Since Ck(P) < Z(G), it means that the block idempotents of kG are ex-
actly the primitive idempotents of the (split semisimple commutative) algebra
kCk(P). Let e be one of them, and k) = kCk(P)e be the corresponding (one
dimensional) simple kCk (P)-module, where A : Cx(P) — k* is the associated
group homomorphism.

Let w : G — K denote the projection map. Set N = NGX(;(A(P)) and
N = N/A(P). There is a short exact sequence

1 Z(P)—>N S+ K 1,
where

o K={(a,b) e K x K|a'be Ck(P)}.

e i is the map sending 2z € Z(P) to (z,1)A(P) € N.

e s is the map sending (a,b)A(P) to (w(a), w(b)).
So N = Z(P) x K, with the explicit embedding INL—> N sending (a,b) € K to
(a,b)A(P) € N. We consider K as a subgroup of N via this embedding.

The Brauer quotient of the (kG, kG)-bimodule kG at A(P) is isomorphic
to kCq(P), so kGe|A(P)] = kCq(P)Brp(e) = kCq(P)e = kZ(P) ®y, k), since
Brp(e) = e as e € kCk(P). It follows that

kGe = Ind§*“InfNkCq(P)e = Ind 5 “InfN(kZ(P) @ k),

3This proof is a slightly simplified and generalized version of the proof given by M. Ducellier
in Proposition 4.1.2 of his thesis [10] in the case R = C.
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where N 2 Z(P) x K acts on kZ(P) ®j, ky by
(a,b)A(P).(z®1) = (abil)pz ® (abil)p/ 1= A((abil)p/)(alfl)p z®1

for (a,b) € N and z € Z(P), where (ab™'), € Z(P) and (ab™ '), € Ck(P) are
the p-part and p'-part of ab™! € Cg(P) = Z(P) x Ck(P), respectively. Then
kZ(P) ® k) is isomorphic to Indg k5, where X: K — kX sends (a,b) € K to
Aab™1) € k*. So

kGe = InngGInf%Indgkx
(P)K

k~

= Indy IndA ~Infl~< S

(P)K

o Indi(XPG)I?IanA?(P ks (3.7.1)

Now we set G = G /Ck (P). We denote by g — g the projection map, and by
§:G — G x G the map g — (g,g). We will show that the (kG, kG)-bimodule
kGe factors through the group G, that is, there is a diagonal p-permutation
(kG, kG)-bimodule U and a diagonal p-permutation (kG, kG)-bimodule V' such
that kGe =2 U @, V.

The group P embeds in G x G via §. Its image §(P) is a diagonal subgroup
of G x G, and its normalizer is

Nj = Ngy e (8(P)) = {(a,b) € G x G | 2% = 2P, Va € P}.

In other words (a,b) € N if and only if 290" = T for all € P, or equivalently
if the commutator [z,ab™!] is in Cx(P). But since P < G, we have that
[P,ab='] C P. Hence (a,b) normalizes §(P) if and only if [P,ab™!] C PN
Ck(P)=1,ie. ab~! € Cq(P). Thus

Ns = {(a,b) € G x G | ab~! € Z(P) x Cx(P)}.

Recall that @ : G — K denotes the projection map. We have a surjective group
homomorphism ¢ : Ns — K sending (a,b) to w(a). It induces a surjective group
homomorphism

o: N(; = N5/5(P) — K

sending (a,b)d(P) to w(a). The kernel of this morphism consists of the elements
(a,b)5(P) such that a € P and ab~! € Z(P) x Ck(P). Since

(a,5)8(P) = (1,ba 1)(a,@)8(P) = (1,ba 1)3(P),

and since ba~—! € C(P)/Ck(P) = Z(P), we get a short exact sequence

1 Z(P)—>Ns; 2> K 1




where «(z) = (1,2)0(P) for z € Z(P). This sequence is split, via the morphism
a€ K+ (a,a)d(P), fora € K,so Ns = Z(P)x K.

Now since K is cyclic, we can extend A : Cx(P) — k* to a group homomor-
phism § : K — k*. This gives a one dimensional kK-module kg, that we can
induce to N5 = Z(P) x K. We get a projective kN s-module, and we set

U := nd§CInfy’ Ind ks
This is a diagonal p-permutation (kG, kG)-bimodule, and

~ G N, ) ~ (P
U = Ind§ CInd )}, Inf5e7 ks 2 Tnd$xS Ity ks,

where K is viewed as a subgroup of N5 via the map a € K — (a,a) € Ns. We
observe that 0(P)K is equal to §(G), so

U = Ind§ <5 Inf @ ks.

We define similarly a (kG, kG)-bimodule V' by

e Tnd GG 1,,£9°(G)
V= Indéo?G)Iano kg-1,
where 0° : G — G x G sends x to (%, z), and K° = {(a,a) | a € K}.

Now we compute the tensor product U®,7V using Theorem 1.1 of [3]. Since
p2(6(G)) = G, there is a single double coset p2 (6(G))\G/p1(6°(G)). Moreover
k2(6(G)) =1, so we have

U g V = d$sS 0 ) (I ks @4 Infit ), (3.7.2)
where
§(G) *6°(G) = {(a,b) e G x G | F € G, (a,¢) € §(G)and (c,b) € 6°(G)}

_{ab )eGxG|a=D)
={(a,b) e Gx G |ab~! € Cx(P)}.
Now if a = zu and b = yv, with x,y € P and u,v € K, we have

_ 1 —1, _
ab ' =zuww Ty =2 (yh cue

so ab™! € Ck(P) if and only if uv™! € Cg(P) and z =y, ie. (u,v) € K and
(z,y) € A(P). It follows that §(G) * °(G) = A(P)K.
The action of (a,b) € 6(G) * §°(G) on the tensor product
— fS{ P kg @4 It kg

is obtained as follows: Let ¢ € G such that (a,c¢) € 6(G) and (¢,b) € §°(G),
that is @ = @ = b. Then for v € Inf%G)kﬁ and w € Infi;C(.G)kﬁ_1, we have
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(a,b)- (v@w) = (a,¢) - v® (¢,b)-w. Here T is one dimensional, with basis 1 ® 1,
and

(a.b) - (1 1) = B(w(a))5( (b))~ 1( ®1)
= B(w ab~! ) 1®1
=Aw(@ ))(1®1
since the restriction of 8 to Ck(P) is equal to A.
Now for (a,b) € §(G) * §°(G) = A(P)K, we have A(w(ab~1)) = A(p(a,b)),
where p : A(P)f( — K is the projection map. Then T = Inf%(P)RkX,
by 3.7.1 and 3.7.2, we get that

and

~ GxG ~ GxG AP)E,, ~
U®eV =Ind (X)*JO(G) IndA(XP) =Inf =" ks = kG,

as was to be shown.

So if Cx(P) # 1, all the bimodules kGe are mapped to 0 in Eg(G), and the
image of their direct sum kG is also 0. Now as its identity element is equal to 0,
the algebra Er(G) itself is equal to 0. 0

Corollary 3.8: Let G = P x K, where K is an elementary p'-group of order
invertible in R. If Er(G) # 0, then K is cyclic and acts faithfully on P.

Proof: Indeed if Eg(G) # 0, we know by Theorem 3.6 that K is cyclic, and by
Theorem 3.7, that K acts faithfully on P. 0

In other words G = P x (u), where (P, u) is a D®-pair, as defined hereafter:4

Definition 3.9: A D®-pair is a pair (P,u) of a finite p-group P and a p'-
automorphism u of P.

We recall the following notation ([7], Notation 6.8):

Notation 3.10: For a D®-pair (L,u), we denote by Aut(L,u) the group of
automorphisms of the semidirect product L{u) = L x (u) which send u to a
conjugate of u, and by Out(L,u) the quotient Aut(L,w)/Inn(L{u)) of this group
by the group of inner automorphisms of L{u).

4 DA _pairs were first introduced in the slightly different Definition 4.4 of [6]. The subsequent
Lemma 4.5 there showed that the two definitions are equivalent.
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4 Generators and relations for &g(G)

Notation 4.1: For a finite group G, denote by G° the group Hom(G,E>).
For A € G, let ky denote the corresponding one dimensional kG-module. For
v € Aut(G), denote® by kG \ the (kG, kG)-bimodule equal to kG as a vector
space, with action given by

V(.I',y,Z) € G37 r-z-y= )‘(y)_lxzf}l(y)

Lemma 4.2: Let G be a finite group.

1. Let v € Aut(G) and N € Gb. Then kG, is a diagonal p-permutation
bimodule, and there is an isomorphism of (kG,kG)-bimodules
~ GxG
KGx 2 nd§*G .
2. 6 Let § € Aut(G) and pn € GB. Then there is an isomorphism of (kG, kG)-
bimodules

kG \ ®rc kGsp = kG yos,(xos) x -

3. If kG has only one block, then kG, is an indecomposable (kG,kG)-
bimodule, for any v € Aut(G) and any A € G.

Proof: 1. Let S be a Sylow p-subgroup of G. Then A(z) =1 for any x € S, so
the restriction of kG, ) to the Sylow p-subgroup Sx S of G xG is the permutation
bimodule kG, with action x - z - y = zzv(y), for z,y € S and z € G. Moreover
this action is free on both sides, so kG ) is a diagonal p-permutation bimodule.
Finally, the map g € G — (g,1)A,(G) is a bijection from G to (G x G)/A,(G),

and using this bijection, it is easy to check that kG, \ = Indgj(GG)kA.

2. The map (g ® ¢') — Mg")"tgv(q), for g,¢' € G, from kG~ \ ®ra kG, to
kG yo5,(r05)xu induces a well defined isomorphism of (kG, kG)-bimodules.

3. It is clear that for any (kG,kG)-bimodule M, any § € Aut(G), and any
p € G, the k-vector space M Q¢ kGs,, is isomorphic to M. So if kG ) splits
as a direct sum of non-zero (kG, kG)-bimodules M and M’, the tensor product
kG, ) ®ra kGs,,, splits as the direct sum of (kG,kG)-bimodules M ® kGs,,
and M’ ® kG5, none of which is equal to zero. Then kG o5,(x05) % SPLits as
a direct sum of non-zero bimodules. Taking § = y~! and = (Aoy~ )71, we
get that the (kG, kG)-bimodule kG1q1 = kG splits non-trivially. So kG is not
indecomposable, that is, kG has more than one block. 0

In the rest of this section, in view of Corollary 3.8, we assume the following:

5This generalizes Definition 4.1.3 of [10], up to replacing A with A71, which is more conve-
nient in our setting.
5Up to the previous change of notation, this is Proposition 4.1.4 in [10].

14



Hypothesis 4.3: The group G is of the form P x K, where P is a p-group and
K is a cyclic p'-group of order invertible in R, acting faithfully on P.

We want to find the structure of the algebra Er(G). First we look for generators
of Er(G) as an R-module.

Lemma 4.4: Assume that 4.3 holds. Then:

1. kG has only one block. So for v € Aut(G) and X € G%, the bimodule kG-, »

is indecomposable, with vertex A (P).

2. Let~y,d € Aut(G) and A\, u € G". Then the bimodules kG, x and kG5, are
isomorphic if and only if X = p and 6 oy~ is an inner automorphism of

G.

3. Conversely, if M is an indecomposable diagonal p-permutation bimodule
with vertex A (P), for v € Aut(G), then there evists X € G* such that
M = kG, .

4. In particular, if M is an essential indecomposable diagonal p-permuta-
tion (kG, kG)-bimodule, there exist v € Aut(G) and A € G* such that
M = kG, y as (kG, kG)-bimodule.

Proof: 1. The p-subgroup P of G is normal, and Cg(P) = Z(P) x Cx(P) =
Z(P) < Psince Cg(P) =1 as K acts faithfully on P. So kG has only one block
([1] Proposition 6.2.2). Then all the bimodules kG, ) are indecomposable, by
Lemma 4.2.

Let v € Aut(G). Set N := Ngxa(A(P)), and N = N/A,(P). Then

N ={(a,b) e G x G| a_ly(b) € Cqa(P)=Z(P)},
so the second projection po induces a short exact sequence

1 Z(P) N K 1,

which is split (by the map z € K + (y(z),2)A4(P)). Now the indecomposable
projective kNN-modules are the modules Ind%kz,\, for A € K% Moreover
Ind§*“Inf{Indiky = IndF*“IndX_(p) A (x)ka
~ GxG ~
~ IndAj(G)k)\ = kGy o,

by Lemma 4.2. This gives another proof that kG, is indecomposable, and also
shows that it has vertex A, (P), and Brauer quotient

kG A[A(P)] 2 Indfky = kZ(P) @y, k. (4.4.1)
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2. First, if A = p and 0 = i, o v, where 7, is conjugation by x € G, then one
checks easily that the map ¢ € G — gx € G induces a bimodule isomorphism
EGy\ = kG(;’u.

For the converse, let v/ = y~! and X' = (Ao~’)~!. Then by Lemma 4.2, we
have an isomorphism of (kG, kG)-bimodules

kG%)\ (X ¥el kG,y/’)\/ > kG <N = kGId,l = kG.

v’ ,(Aoy’)

So if kG5, =2 kG x, we have an isomorphism of (kG, kG)-bimodules
kG(;“LL Rra kG,y/’X = kG,

that is

kG sorn' (poyyxx = kGrd1-

poy')
So if we know that an isomorphism of bimodules kGy, = kG1q,1, where 6 €
Aut(G) and p € G* implies that 6 is inner and p = 1, we are done, since we can
conclude that § 0y’ = § oy~ ! is inner, and that (po+') x N =1,ie. u= X In
other words, we can assume v = Id and A = 1, and that kG5, = kG.

Now if kG5, is isomorphic to kG, then its vertex As(P) is contained in -
hence equal to - A(P), up to conjugation in G X G. It means that the restriction
of 0 to P is equal to the conjugation by some element of G. Up to composing
0 with some inner automorphism of GG, we can assume that this restriction is
equal to the identity, and then ¢ is equal to the conjugation by some element of
Z(P), by Lemma 3.1. This shows that ¢ is inner.

Then we have a bimodule isomorphism kGs ) = kGig,\ by the first remark
in the proof of Assertion 2. In other words, we can assume ¢ = Id and kGiq ) =
kGiq,1. Then the Brauer quotients at A(P) of these bimodules are isomorphic.
Hence kZ(P) ® ky =2 kZ(P) @ k = kZ(P). Now the fixed points of Z(P) on
kZ(P)® k) form a kK-module isomorphic to ky, so k) = k as K-module, hence
A =1, as was to be shown.

3. Suppose conversely that M is an indecomposable diagonal p-permutation
(kG, kG)-bimodule with vertex A, (P), where v € Aut(G). Then M[A,(P)] is
an indecomposable projective kN-module, of the form Indgk)\ for some \ € K¥,
and then o

M = Ind§*“InfiInd{ky = kG, 5.

4. As in the proof of Theorem 3.6, we apply Lemma 3.5, in the case H = GG and
U = M. We know that

(P)-T

M = d$*G, It T,

=(P)T

for some 7 € Aut(P), some subgroup 7' of NKxK(A7r (P)) with po(T') = K, and
some simple kT-module W.
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Moreover ki(T) < ki (NGXG(A,r(P))) = C(P) = Z(P). So ki(T) = 1
since T is a p’-group. Then ps : T — K is an isomorphism, with inverse 6, and
T = Ag(K). Then T is cyclic, and W = k, for some \ € T*.

Now T normalizes A, (P) if and only if @7 (y) = n(*y) for any = € K and
any y € P. Then the map v :y-x + 7(y)-0(x), where y € P and x € K, is an
automorphism of G, such that y(K) = K, and Ar(P)- L = A,(G). Then

~ GxG
M = IndA:(G)k‘M,

where 1 = Ao w € G* 2 A (G)". Now M = kG, , by Lemma 4.2. O

It follows that Er(G) is linearly generated by the images of the (kG, kG)-
bimodules kG y, for v € Aut(G) and A € G'. By Lemma 4.4, we can take 7 in
a set of representatives of elements of Out(G). We want to describe the linear
relations between these generators. In other words, we want to find equalities

of the form .

Z Ty Gy = Z $i Ui ®rm, Vi, (4.4.2)
~€Out(G) =1
AEGH

in RT2(G, G), where rvx € R, m €N, and for 1 <4 < n, H; is a finite group
of order smaller than the order of G, U; is a diagonal p-permutation (kG, kH;)-
bimodule, V; is a diagonal p-permutation (kH;, kG)-bimodule, and s; € R. We
can assume moreover that for 1 < i < n, the essential algebra Er(H;) is non-
zero: Indeed otherwise, the identity bimodule kH; € RT*(H;, H;) is a linear
combination with coefficients in R of elements of RT*(H;, X ) ®ix RT2 (X, H;),
for | X| < |H;|, and we can replace H; by smaller groups in (4.4.2).

Hence, by Corollary 3.4, we can assume that for 1 < i < n, we have H; =
Q; ¥ L;, where Q; is a p-group, and L; is an elementary p’-group. We can also
assume that U; and V; are indecomposable, and that U; is right essential and V;
is left essential.

Lemma 4.5: Assume that 4.8 holds. Let H be a finite group, and U be a right
essential indecomposable diagonal p-permutation (kG, kH)-bimodule. Then the
vertices of U have order at most |P|. If U has vertex of order |P|, then there
exists an injective group homomorphism o : H < G such that P < o(H) and
A€ H' = A, (H)! such that

U = IndX (7 .

Proof: We know from Lemma 3.5 that H = ) x L, where @ is a p-group with
an embedding 7 : Q — P, and L is an elementary p’-group. Moreover there is
a subgroup T of NKxL(AW(Q)) with po(T) = L, and a simple kT-module W
such that

U IndA:(Q).TInfT w.
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Then a vertex of U is contained in Ar(Q) - T up to conjugation, so it has order
at most |Q| < |P|. And if it has order |P|, the embedding 7 : Q — P is
an isomorphism. Moreover ki(T") < k; (NGXH(AW(P))) = Cg(P), so ki1(T) <
Ck(P) = 1since K acts faithfully on P. Then the projection map py : ' — L is
an isomorphism, and then 7' = A;(L), for some injective group homomorphism
7: L — K. In particular L and T are cyclic.

Moreover since T' = A;(L) < Ngxpu(Ax(P)), we have Wr(z) = n('z) for
any | € L and x € Q. Then the map ¢ : H = @) - L — G sending z - [, for
xe€@and!l € L, ton(z) 7(l), is an injective group homomorphism, such that
P < ~(H) < G. Moreover Ar(Q)-T = A,(H). Finally T is cyclic, so there
is A\ € T% = L¥ = HY such that W =k, and U = IndG* ky, completing the

Aq(H)
proof. O

Theorem 4.6: Assume that 4.3 holds. Let H be a finite group, let U (resp. V')
be a right (resp. left) essential indecomposable diagonal p-permutation (kG, kH)-
bimodule (resp. (kH,kG)-bimodule).

1. If U ®g V has an indecomposable direct summand with vertex of order
|P|, then there is a subgroup I = H of G, containing P, an automorphism
Y of I, and € I' = Aw(I)h such that

~ GxG
Uk V= IndAz(I)k:C.
2. If U ®rpg V admits an essential indecomposable summand, then this sum-
mand has vertex A (P) for some v € Aut(G), and there exists J < K
and 0 € J* such that P-J = H and

Uerg V= P kGya

a€cly

as (kG, kG)-bimodules, where Iy = {o € G = K% | Resfa = 0}.

Proof: 1. Let X be a vertex of U. Then X is a diagonal subgroup of P x H, so
|X| <|P|, and U is a direct summand of Ind§*# k. Similarly, if Y is a vertex of
V, then Y is a diagonal subgroup of H x P, hence |Y| < |P|, and V is a direct
summand of Indg *GL. Tt follows that U iy V is a direct summand of

D mdT
hep2(X)\H/p1(Y)

So the vertices of the indecomposable summands of U®y gV are contained (up to
conjugation) in some group X % "DV which has order at most min(|X|, |Y).
If one of them has order |P|, then |P| < |X| < |P|, hence |X| = |P|, and
[Pl < Y| <[P],so [Y]|=|P].
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By Lemma 4.5, it follows that there is an embedding ¢ : H — G with
P < o(H) <G, and \ € H?, such that U = Indgxg{)k,\. Similarly, swapping

G and H, there is an embedding 7 : H — G with P < 7(H) < G, and u € H,

such that V 2 Ind %Gk, where A9(H) = {(h,T(h)) |he H} Then

U @kn V 2 IndZ G a0 ) (Fr @ K-
Now o(H)/P and 7(H)/P are subgroups of the same order of the cyclic group
K, so o(H) = 71(H). Set I := 7(H). There is a unique automorphism ¢ of I
such that ¢(7(h)) = o(h) for all h € H. Then

Ay (H) * A°(H) = {(o(h),T(h)) | he H} = {((x),2) |z € T} = Ay(I).

Moreover ky ® k, is one dimensional, so there is a unique ¢ € [ 7 such that
ky ® ky, = k¢ as kI-modules, defined by ((z) = (Ap)(77*(x)) for z € I. This
completes the proof of Assertion 1.

2. By Lemma 4.4, an essential diagonal p-permutation bimodule M is isomor-
phic to kG-, , for some v € Aut(G) and A € G Then M has vertex A (P), of
order |PJ, so the conclusion of Assertion 1 holds. Hence there is a subgroup I
of G, containing P, an automorphism v of I, and ¢ € I, such that

U @y V 2 IndZ () ke.
In particular A,(P) is contained in Ay(P), up to conjugation, and we can
assume that A, (P) = Ay (P), i.e. that ¢ is the restriction of v to P. We have
Ay(P) < Ay(I) < N := Naxa(Ay(P)) = Naxa(Ay(P)). So N fits in a short
exact sequence of groups

1 Z(P) N K 1.

This sequence splits via x € K +—> (’y(:L‘), x) Ay(P), and we view K as a subgroup
of N via this map.

The group Ay (1) = Ay(I)/Ay(P) is a subgroup of N, and intersects Z(P)
trivially. So Ay () is isomorphic to a subgroup J of K. Let 6 : J — k™ be the
image of ¢ under this isomorphism.

Ay (1)

Since Ay(P) acts trivially on k¢, we have k¢ = Infzw(l)kz, where ( is the
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homomorphism A, (1) — k* corresponding to (. Hence we have

UQpaV = Indgzc ke

()
_ GXGy.. 1N Ay(l) g,
= Indy Indﬁw(I)Ianw(I) /{:C

I

GxGt,.¢N N
Indy* Infﬁlndlw(l)kf

1

GXG1wfN 1 AN Ay (1)
Ind Inf5 Indzw ( I)Iso 5" ko

Ind$*CInfNInd ¥ Ind’f k.

1

Now K is cyclic, so Ind¥ky = Zh kq, and if & € KU then Indgka is
€K
R?s§a=9

an indecomposable projective kN-module. Then Ind%XGInf%Indgka = kGoy .
Now

Uy V= @ kG,
BEZLy

as was to be shown. 0

Notation 4.7: Assume that 4.3 holds.
1. We abuse notation identifying A € K° with ky € Ri(K).

2. We set Rp(K) = Ri(K)/ Y. Ind¥Ry(L), and we let o — @ denote the
L<K
projection map.
3. Lety € Aut(G). Then Naxa (A (P)) = Z(P)x K, so taking coinvariants
by Z(P) yields an isomorphism

v € Proj (kﬁgxg(A,y(P))> = vz(p) € Rk(K)

For u € TA(G,G), let ,(u) denote ulAy(P)lzp) € Bi(K).

We note that > Ind¥ Ry (L) is an ideal of the ring Ry(K), so R(K) has a
L<K

natural quotient ring structure. Moreover, the group Aut(G) acts on G = K?,
and Inn(G) acts trivially on G, since [G,G] < P. So Out(G) acts on Ry (K)

and Ry(K) by ring automorphisms.

Notation 4.8: We denote by Out(G) x R (K) the semidirect product of Out(Q)
with Ry,(K), i.e.

Out(G) x Bp(K) = @B v Re(K),
~yEOut(G)
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where v X Rip(K) denotes a copy of R(K) indexed by .
Then Out(G) x Ri(K) is a ring for the product defined by

Vy,d € Out(G), YA\, 1 € Rp(K), (Y x A) - (0 X 1) := (y06) x (()\05) X ,u).
We set

Out(G) x RRk(K) := R®z (Out(G) x Rp(K)) = @ v x RRy(K).
veOut(Q)

In the next statement, we recall explicitly Hypothesis 4.3, for the reader’s
convenience.

Theorem 4.9: Let G be a group of the form P x K, where P is a p-group and
K is a cyclic p'-group of order invertible in R, acting faithfully on P. Then:

1. The map
v X @€ Out(G) x Rﬁk(K) — er(kGya) € Er(G),

where o € K% and v € Out(Q), extends to a well defined algebra homo-
morphism T.

2. The map

er(u) €ER(G) = > yxry(u) € Out(G) x RRy(K),
veOut(G)

where u € RTA(G, G), is a well defined algebra homomorphism S.

3. The maps

Er(Q) % Out(G) x REy(K)

are tsomorphisms of algebras, inverse to each other.

Proof: Proving that the map T is well defined amounts to proving that if
u € K" is induced from a proper subgroup J of K, and if v € Out(G), then
T(yx @) =0. Let J < K, and § € J% Then u =Ind560 = 3 k,, so

a€ly

T(y x u) zgR( EB k‘G%a).

aEly
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But setting N := Ngxa(A4(P)) and N := N/A,(P), we have

EB kG o = EB Ind%XGInf%Indgk‘a
a€ly a€ly
o InngGInf%Indg( @ ka>
a€ly
> Ind§*“InfNInd Y Ind S k

~ AL (P)-A (K
:IndgxGIndXW(P)-AW(K)Ian’Y( ) ,Y( )

(@)

Ind% kg

= InngG Inf ﬁ” Ind% kg
Y

(©)]
~ G A4(G) Ay (P)-Ay ()
= IndAj ImdA:(P).AV(J)Ime7 kg
~ Tn]GxG Ay (P-J)

&~ IndAWX(P,J)Ian7 kg.

G
(@)

But po (A,Y(P . J)) =P .J < G since J < K. Hence 5R<@OIEI@ kG%a> =0, as
was to be shown, so the map T is well defined.

Now comparing the products in Lemma 4.2 and Notation 4.8, we get that T
is a homomorphism of R-algebras. Moreover the identity element of Out(G)
RRy(K), which is Id x 1, is mapped by T to Er(kGia1) = Er(kG), which is the
identity element of Er(G).

2. Proving that the map S is well defined amounts to proving that if H is
a finite group with |H| < |G|, if U (resp. V) is a right (resp. left) essential
diagonal p-permutation (kG,kH)-bimodule (resp. (kH,kG)-bimodule), then
S(U ®ku V) = 0. So let v € Aut(G) such that 7,(U @y V) # 0. Then
in particular (U ®xmg V)[A(P)] # 0, so U @iy V admits an indecomposable
summand with vertex A,(P). By Lemma 4.4, this summand is isomorphic to
kG, x, for some \ € G®. By Theorem 4.6, there is a subgroup J of K with
P.J=H, and 0 € J! such that

Urg V= P kGya

a€cly

Now by (4.4.1)

(U @t V)[A(P)] = @D ndR ko = Ind} ( @D ka) = kZ(P) @, Ind/f ke

a€ly agly

It follows that in Ri(K), we have 7 (U ®py V) = Ind kg = 0 since J < K as
P.J = H and |H| < |G| = |P||K|. This contradiction shows that S is well
defined.

We postpone the proof that S is an algebra homomorphism at the end of
the proof of Assertion 3.
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3. Lety € Aut(G) and a € K%, Then kG, , has vertex A, (P), and kG-, o[A(P)] =
kZ(P) ® kq by (4.4.1). We also get from Lemma 4.4 that kG, [As(P)] = 0 if
d € Aut(G) and ¢ # v in Out(G): Indeed, if A,(P) and As(P) are conjugate
in G x G, then the restriction of § to P is equal to the restriction of § to P, up
to an automorphism given by conjugation by some element of G, which we may
assume to be trivial. Then 617 is inner, by Lemma 3.1.

It follows that S(Er(kG., ) = v x @. Since T(y x @) = Er(kGq), the
maps S and T are inverse to each other. In particular, they are bijections, so S
is a map of R-algebras, as T is. This completes the proof. 0

5 The simple functors

5.1. We want to consider the simple diagonal p-permutation functors, so by
general arguments, we can assume that our ring R of coefficients is a field F.
Moreover, in order to apply the results of the previous sections, we want that
p'-groups have order invertible in F. So we are left with the cases where F has
characteristic 0 or p.

If S is a simple diagonal p-permutation functor over F, and H is a finite
group of minimal order such that S(H) # 0, then V = S(H) is a simple module
for the essential algebra &p(H). In particular &r(H) # 0, so H = L(u) for some
DA-pair (L, u). Moreover, we have an isomorphism of algebras

Er(L{u)) = Out(L(u)) x FR(L(u)).

5.2. Conversely, if (L,u) is a D®-pair, and V is a simple &g (L<u))—module, then
we denote by Sy, the unique simple diagonal p-permutation functor with
minimal group L(u) and such that Sy v (L(u)) =V as an Er(L(u))-module.
The evaluation of Sy, at a finite group G is isomorphic to

St v(G) = (FT 2@, L{w)) @ (pu) V) /R,

where R is the subspace generated by all finite sums ) . f; ® v;, with f; €
FT2(G, L{u)) and v; € V for i € I, such that >, ;m(¢ o f;) - v; = 0 for all
¢ € FTA(L(u),G), where m : FT*(L{u), L{u)) — Er(L(u)) is the projection
map.

5.3. In particular, let f € FT4 (G, L(u)) be of the form f = Ind%XLMInf%E,
where

1%

o N = NGXMu)(A(P,’y,R)), for some R< Landvy: R— P <G,
o N =N/A(P,v,R),

e E is a projective kN-module.
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If there exists some v € V such that f ® v ¢ R, then there exists ¢ €
FT2(L(u),G) such that w(¢ o f) # 0. In particular, the Brauer quotient
(po f)IA(L,0,L)] has to be non zero for some 6 € Aut(L), which forces R = L.

5.4. Moreover if f € FT® (G, L(u)) can be factorized through a group of order
strictly smaller than the order of L(u), then f ® v € R for any v € V. So if
there exists v € V with f ® v ¢ R, then in particular pa(N) = L{u).

Remark 5.5: This condition py(/N) = L{u) means that for any x € L(u), there
exists g € Ng(P) such that 9y(l) = y(*I) for all | € L. Equivalently, there exists
s € Ng(P) such that *y(I) = ~(*l) for all [ € L: Suppose indeed that such an

element s exists. Any element x € L is equal to lpu® for some [y € L and o € N.
Then

Y 0y =Y 0y O tur = iy(lg) © Y © (tu) = lq(ig) © (is)™ 07 =iy (1p)s= 07,
that is ig 0y = v 0 iy, for g = v(lp)s®

In other words, saying that pa(IN) = L(u) amounts to saying that (P,~)
belongs to the set

P(G,L,u) :={(P,7) | 7: L5 P<G, 3s € Na(P), isoy =704y}

For ¢ € Aut(L(u)), we have that

Ny (AP, v, L)) = {(a,b) | (a,0(b)) € Nexrw (AP, L))}
= ( 1)]VGXL )(A(P”%L))

so the set P(G, L,u) is a (G Aut(L ) biset by

Vg € G, Vp € Aut(L(u)), g- (P,7) - ¢ = (9P, igyp),

5.6. Let T(G, L,u) denote the set of triples (P,~, E), where (P,~v) € P(G, L,u)
and F is an indecomposable projective kN (A(P, ~, ))/A( .7, L)-module. The

set T(G, L,u) is also a (G,Aut (L(u>))—biset by
Vg € G, Vp € Aut(L(u)), g- (P,7, E) - o = (IP,igyp, I E7)

where YE¥ is the kN (A(9P, igyp, L)) /A(YP, igyp, L)-module obtained from E
via the group isomorphism

(a, ) A(IP,igyp, L) — (ag, (p(b))A(P, v, L)

from kN(A(QP,i97¢,L))/A(9P, igyp, L) to k:N(A(P,% ))/A( Y, L).
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For (P,v,FE) € T(G, L,u), set
T(P,7, E) = Indy " It E,

where N = Ngy .y (A(P,7,L)) and N = N/A(P,~,L). Then T(P,~,E) is a
diagonal p-permutation (kG,kL(u))-bimodule, and we abuse notation writing
T(P,v,E) € FTA(G, L{u)). We observe that for (g,¢) € G x Aut(L(u)), we
have

T(gpaigvsongw) = T(P777E) ®L<u) k(L<u>)w7

where k(L(u>)w is the bimodule k(L(u)) twisted by ¢ on the right, that is
x-m-y (in k(L(u>)w) = zmp(y) (in k(L{w))).

5.7. Now a lemma:

Lemma 5.8: Let J be a finite group, let K < J such that J/K is a cyclic
p'-group. Let E be an indecomposable projective kJ-module, let V' be an inde-
composable summand of ResﬂE, and H be the inertia group of V in J. Then V
extends to an indecomposable projective kH -module F, and there exists a group
homomorphism X : H/K — k™ such that

E = Indy; (F @ Inff7 k).

Proof: Use Theorem 3.13.2 in [1], and Theorem 4.1 of [7]. 0

5.9. Let (P,v,E) € T(G,L,u). Set Npy = Ngxpw (A(P,7,L)), and Np,, =
Np~/A(P,v,L), so E is an indecomposable projective kN p,-module. There is
an exact sequence of groups

1 — Cq(P) = Npy— (u) = 1, (5.9.1)

Np.

na o)
and H its stabilizer in Np,, there exists an indecomposable projective kH-
module F' such that

so by the previous lemma, if V' is an indecomposable summand of Res,

E~TndY"F.
From this follows that

T(P,7, E) = Ind "t B

Npy
= Indy < "'In fﬁP”I aNro

= Indy < “"'In dNPVIanF ~ Ind? It p,

where H is the inverse image in Np, of H < Npﬂ, by the projection map Np, —
Npn. Now T(P,v, E) factors through the second projection of H < G x L{u),
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so we can assume that this projection is the whole of L(u), i.e. equivalently that
H = Np,. In other words, by Theorem 4.1 of [7] already quoted above, we can

assume that Resgg’(})E is indecomposable. We denote by Pim*(kNp,) the set

of isomorphism classes of such indecomposable projective kzﬁpﬁ—modules7 and
by T*(G, L,u) the subset of T (G, L, u) consisting of triples (P,~, E) such that
E € Pimf(kNp.,).

5.10. It follows from the above remarks that Sp, v (G) is generated by the
images of the elements T'(P,~, E) ® v, where

e (P,~v) runs through a set [P(G, L, u)] of representatives of orbits of (G x
Aut(L(u))) on P(G, L, u),

e EcPim*(kNp,),
evelV.

In other words, we have a surjective map

@ T(P777 E) QV — SL(u),V(G>
(Py)€[P(G,L;u)]
E€Pim!(kNp )

sending T(P,v, E) ® v € FT*(G, L{u)) ® V to its image in Sp, v (G). The
kernel of this map is the set of sums

Z T(P,v,E)®vpyE
(P)EP(G,Lu)]
EcPim!(kNp )

where vp, g € V, such that for any (Q,9) in [P(G, L, u)] and any indecompos-
able projective kN s-module F', or equivalently for any F' in Pimf (kN Q)

S a(1°(Q,5, F) &k T(P,, E)) - vpap = 0, (5.10.1)
(P)€EP(G,Lu)]
E€Pim*(kNp )

where T°(Q, 0, F') is the (kL(u), kG)-bimodule “opposite” of the (kG,kL(u))-
bimodule T(Q, J, F'). In other words

NO
7°(Q, 5, F) = IndX{ ¥ % nf 99 o
(Q') ) ) n NQ’(; n NQ,&

where
i Néﬁ = NL(u)XG’(A(La(S_la Q))a

b NZ),(S = N&,é/A(L75_17 Q))
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e [° is the opposite module of F'.

Now if W(TO(Q,(S, F) Qg T(P,'y,E)) = 0, there exists an automorphism 6
of L{u) such that

(TO(Qa 67 F) kG T(P7 7, E)) [A<L7 07 L)] 7é 0.
Hence there exist V < G, a: V 5 L,and 5: L 5 V such that 0 = af and
T°(Q, 6, F)[A(L, 0, V)] # 0 and T(P,, E)A(V, 8, L)] # 0.

So A(Q, 4, L) is conjugate to A(V,a~1, L) in G x L{u), and A(P,~, L) is con-
jugate to A(V, 5, L) in G x L(u). By Remark 5.5, this amounts to saying that
there exist g, h € G such that (V,a™1) = (9Q,i40) and (V, 8) = ("P,iy7y). Hence
P=V"=""9Q and 6 = 5~ Yi 1.

In other words, setting z = h™'g, we have P = ?Q and v = i,06, that is
(P,y) = z-(Q,9) - 0. As (P,7) and (Q,d) are both in our set [P(G, L,u)] of
representatives of G x Aut(L(u))-orbits on P(G, L, u), this forces P = @ and
v = 0.

Now Equation 5.10.1 reduces to the fact that for every (Q,0) in [P(G, L, u)]
and any F € Pim*(kNg 5)

> w(T°(Q,6,F) @ka T(Q,6,E)) - vgsp =0. (5.10.2)
Ee€Pim*(kNg s)

It follows that

Stwyv(@ = P ( o_ T(Q,(S,E)@)V)/RQ,(;) (5.10.3)
(Q.0)€[P(G, L) EEPM* (kN 5)

where the relations R¢ s are given by (5.10.2) for every F' € Pim(kNg.s).
Now we set

GQ,5 = {g €eqG ‘ Jo € L<u>7 (gvx> S NGXL(u) (A(Qa57 L))}

With this notation, the (L({u), L{u))-bimodule M =T°(Q, 4, F) e T(Q, 6, E)
is isomorphic to

o~ L{u) x Lw) NG5 o (9,1) ﬁQ,E
M= P Wdg o (Infe® F 0.0 Infy>" E)
9€GQ,s\G/Gq,s '

Q,
N2 Noo.s
- EB Indigtlijl\gzg s (Infﬁg";F" ® Infﬁiz 9‘; (gvl)E)‘
’ g ) g i
9€GQ,s\G/Gq,s Q kCc(Q,9Q) 9

(5.10.4)

5.11. Now another lemma:
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Lemma 5.12: Let G, H, K be finite groups, let Z < X < Gx H and T <Y <
H x K be subgroups. Set D = ko(X)Nk1(Y). Then X/Z xY /T is a X *Y -set,
D

and for (u,v)Z € X/Z and (w,r)T € Y/T, the stabilizer of (u,v)Z x(w,r)T in
D
X %Y is equal to (W) Z « (W),

Proof: This is straightforward. 0
5.13. Let M, denote the term of the direct sum (5.10.4) indexed by g € G, that
is

My = Indgf7 5t fQ‘;FO Ing'95<91>E.

To apply the previous lemma, we set
X =N3s Y =Noqie, Z=A%Q,6,L), T =A(9Q,i40,L).

Then ky(X) = Ca(Q) and k1 (Y) = Ca(?Q), thus D = Ce(Q,? Q). Moreover
Z<4dXand T 4Y

Now since F is a direct summand of kN, Q,s, it follows that Inf_ NgQ 90 (9D B s

9Q,igd
a direct summand of kY /7. Similarly Inff(g  F° is a direct summand of kX/Z.
Q é
QQ i 7]_ .
Hence Inff F OrCe(Q9Q) Inf~ gQﬂgé(g )E is a direct summand of

kX/Z @cgqoq) KY /T = K(X/2) X(Y/T),
By the previous lemma, for (u,v)Z € X/Z and (w,r)T € Y/T, the stabilizer of
(u,v)Z x(w, )T in X xY is equal to (“¥) Zx (W) T = Z«T. Hence the vertices of
D

the indecomposable direct summands of kX/Z @y, (@,9q) kY /T are subgroups
of ZxT.

It follows that if w(M,) # 0, then there exists § € Aut(L(u)) such that
A(L,6, L) is conjugate in L{u) x L{u) to a subgroup of Z xT. Up to changing
6 by some inner automorphism of L(u), we can assume that A(L,0,L) < Z«T.
But

ZxT =AQ,6,L)* A(Q, 46, L)
- {(a, b) € L{u) x Liu) | Je € G, {EZ Z; c 2((%,55;5?@ }
={(¢6” () | ceQNIQ}.

Then Z * T contains A(L,#, L) if and only if Q = 9Q and 6(1) = 6~ *(95(1)) for
any [ € L. In other words g € Ng(Q) and 61,6 is the restriction of 6 to L.
For g € Ng(Q), we set i,° = 6 1i 6 € Aut(L) and

Gos={9 € Na(Q) | 30 € Aut(L(u)), i’ = 0, }.
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With this notation, we see that w(My) = 0 unless g € CA}'Q,(;.
We also observe that Gg s is a normal subgroup of Gg s, and we set

We observe moreover that for g € @G’(g, there is a unique 6 € Aut(L(u)) such
that 0, = ig‘s, up to inner automorphism, thanks to Lemma 3.1.

5.14. For g € GQ 5, we will denote by 6, € Out(L(u)) the unique outer auto-
morphism such that (6,);, = =i,, and by 0 a representative of 0, in Aut(L(u)).

The map g € GQ5 — 0, € Out( (u)) is a group homomorphism, with kernel
Gg.s- In other words Gg 5 = GQ 5/Gq,s embeds in Out(L(u)).

Now let (a,b) € Ngs, i.e. (a,b) € G x L{u), and ¢5(1) = §(°1) for all [ € L.
Ifge CAJQ’(; we claim that (ga, ég(b)) also lies in Ng 5. Indeed for [ € L, setting
U= é;l(l), we have 0(1) = ig0(l'), so

CD§(1) = CDiyd(1) = gad(l')a g™
= g3(1)g ™" = g0 (),

whereas

(%)) = (9 (bé o(1)
= 0(05("1)
=06 Yigs("1") = igs ("),
proving the claim.

In other words, the map ®4 : (a,b) — (9(1,@9(6)) is an automorphism of
Ng.s. Moreover, it sends A(Q, 9, L) to itself. Indeed, for I € L, we have

(6(0). 04(1)) = (i48(0), 67146 (1)) = (5(65(0)).0,(1)).

It follows that ®, induces an automorphism CIJQ of NQ,(;. But there is a little
more: Let wa denote the quotient N¢5/Z(Q). Then by the above lemma,

for g,h € (A;Qﬁ, the composition ®,®j, is equal to @4, modulo an inner au-
tomorphism induced by an element of Z(L). It follows that ®, induces an

automorphism <I>Z of Wéy(g, and that <I>Z<I>% = <I>Zh. In other words a@,(s acts on
b

NQ76.

5.15. Assuming now that g € éQ’g, we have

_ L{u) x L{u) NG5 1o NQ.igs (g,1)
My =1In ngz Ny 1 nfge” F kch)I fNQZga E).
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Moreover
N s * Ng,iys = {(a,b) € L{u) x L{u) | 3c € G, (c,a) € Ngz, (¢,b) € Ng,i,s}
_ “6(1) = 6(“1)
_ {(a,b) € Liu) x L{u) | Je e G, Vi € L,{ essl) 9501
<{(a,b)) € L{u) x L{u) |Vl € L, *(i,° (1)) = iy’ (")}
The last group is the normalizer of A(L,i,°, L) in L{u) x L{u). Conversely,
if (a,b) € NL<u>XL<u)(A(L,ig‘5,L)), since (Q,9) € P(G, L,u), there exists ¢ €
Ng(Q) such that (c,a) € Ng 5. In other words, we have
Vie L, “(ig’ (1)) = i,°(°l) and “5(1) = 5("1).
It follows that
Vi€ L, igd(°l) = 6("is° (1)) = iy (1) = “ig6 (1),
that is (c,b) € Ng,i,s. Thus (a,b) € NG 5 * Nq,i,5, and this gives

N§ 5% Nqigs = Npgwyxrw (AL, ig°, L))

To simplify the notation, we denote this group by NV L7u(ig5).
We also observe that A(L,i,°, L) = A°(Q,d, L) * A(Q,i46, L). We denote
this group by Az ,(i,°), and we set

Nralis®) = Nealis’)/Aralis’).
Since (L,u) is a D®-pair, this group fits into a short exact sequence of groups
1— Z(L) = Npu(ig®) — (u) — 1. (5.15.1)
This sequence splits by the map sending v € (u) to (ég(v), v) € Npu(ig°).

5.16. From the above discussion follows that

NO N .
M) = Ind 20> B (100 o It 27 GVE) ).
e GZG: " < ndNL’“(”gé) (In NQ.s kC?(Q) ! NQ.igs )
g Q,0

The subgroup Az ., (i,%) of N .(i,°) acts trivially on the module

N¢ No s
T F, 7E = Infﬁ?,é FO ® Info’Zgé (g’l)E7
( g ) Ngs kCa(Q) NQ,igé

so T(F, g, E) is inflated from a kN, ,(i,°)-module

— NL,u(igé)*
T(Fag7 E) - InfﬁL‘u(igé)T(F;gaE)a
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where T(F,g,E) = F° ® @UE.
kCc(Q)
The discussion in Section 5.13 above shows that the vertices of the inde-

composable summands of T(F,g, E) are equal to Ar,(i,°). In other words
T(F,g,E) is a projective N ,(i,°)-module. In view of the split exact se-
quence (5.15.1), we have that Ny, ,(i,%) = Z(L) x {u), and

T(F,g,E)= @@ ma(F.g, B)nd\""* "k,
Ae(u)t

for some multiplicities my(F, g, E) € N, where <u>u is the set of group homo-
morphisms A : (u) — k*. It is easy to check that

mx(F, g, E) = dimy, Hom (7 >(Inf< <>> “enT(F,g, E))

— dimy Homy, (. (T(F, g, E)) ™). (5.16.1)

<> L{uyy eNpwl(ig®) 1 1 Z(L)x(u) ;. . ~
(g )If ia? )I d<> ky in the es

sential algebra Er(L(u)) is equal to kGog N1 where 0, € Out(L(u)) and 6, €
Aut(L(u)) are defined in Section 5.147. So our relations R s of (5.10.3) become

Now the image of the module Ind

VF € Pim(kNg ), > ma(F,g,E) kG, - vg =0. (5.16.2)

9€Gq.s
e (u)t
EcPim!(kNg 5)

5.17. In order to understand these relations, we are going to change them a little
bit, by replacing F' by its dual and the tensor product — ®yc, (@) — appearing
in T(F, g, E) by Homyc,(g)(—, —), in other words, by setting now

T(F, g, E) = Homyc, ) (F, OVE). (5.17.1)
In particular, the action of Ny, ,(i,°) on T(F,g,E) is given as follows: for

(a,b) € Np,(is°), choose s € G such that (s,a) € Ngs. Then (s9,b) € Ngs,
and for ¢ € Homyc, () (F, @V E), we have

VfeF, ((av b)(p) (f) = (ng b)(p((sv a)_lf)' (5172>
The action of Z(L) on T(F, g, E) is simply given by multiplication

Vz € Z(L), Y € Homycey (o) (F, CVE), Yf € F, (20)(f) = 6(2)7 - o(f),

"Note that for g € @Q@ the outer automorphism 6, only depends on gGg.s € Go.s.
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where 6(z) € Z(Q). It follows that

T(F, g, B)*") = Homyc, () (F, (g’l)EZ(Q))
(FZ@Q 01 g7 @)

)

= Homych(9)/2(Q)

where the last isomorphism comes from the fact that since F' is projective, the
module of co-invariants Fy q) is isomorphic to the module of invariants I Z(Q),

Now in view of (5.16.1), we have to describe the action of u, that is the
element (ég(u),u) of Np(i4°), on T(F, g, E). For this, we use (5.17.2), and we
choose s € G such that (s, ég(u)) € Ng,s- Now for ¢ € Homg,(q)(F), @DE), we
have

Vf € F, (up)(f) = (s%,u)p((5,05(w) ")
For each \ € <u)h, an element of Hom <k>\, Homyc, ) (FZ(Q), (9’1)EZ(Q))> is
now determined by an element ¢ € Homyc,, () (F, (91 ) such that
v € B Awe(f) = (% u)p( (s,0,() ).
In other words

vf € Fp((s,0,(w) f) = )~ (%, w)e(f):

Since (s9,u) = @, ((s,0,(u)), we get that

vr € B o (s.0,(0) £) = M) ™05 (s 6y )) o ()
Now let ¢ € Cq(Q). Then (c¢,1) € Ng s, and
VfeF, o((c.1)f) = (. Dp(f) = ML) 2" (e, 1)) o(f)-

Let (a,b) denote the image in N¢ s of (a,b) € Ng5. Now the element (s, ég(u)),

together with the elements (c, 1), for ¢ € C¢(Q), generate the whole of N¢ 5. It
follows that for any (a,b) € Ng s

o((a.0)f) = A0, (b))

In other words ¢ is a morphism of kN s-modules from F to the module oA E,

@, ((a.0) e (f)-

equal to E as a k-vector space, but with action of (a,b) € Wng given by

Ve € B, (a,b) - ¢ (in WVE) == A(0,1(0)) '8, ((a,0)) - ¢ (in B).  (5.17.3)

It follows that

m(F, g, E) = dim, Hom, (F#(@, 02 EZ(Q))7
Q.0
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so our relations (5.16.2) become

(kN - 2@Q) g\ p#(@) o —
VFE € le(kNQ’(;), Z dimy, Homﬁg’é (F , E )kG@g,)\ vg = 0.
QGGQA;
Ae(u)f
E€Pim*(kNg,s)

(5.17.4)

Remark 5.18: It should be noted that in (5.17.3), the coefficient )\(ég_l(b))_l

does not depend on the choice of §, € Aut(L(u)) in the class 6, € Out(L{u)),
as two different choices differ by an inner automorphism, so the correspond-
ing values 04(b) are conjugate. Hence we could write A(G;l(b))fl instead of

A1 (B) 7

g

5.19. Suppose now that g,h € @Q75, and A\, pu € <u>u If F is a projective
kﬁ@g-module, we claim that the kNQ75—modules (Rl ([g’A]E) and [h,(1o09) A
are isomorphic. Indeed, there exists an element w € Z(L) such that éhg =
101w Now (1,w) € Ng 5, and we can define f : E — E by f(e) = (1,w=1) -e.
Then f is clearly an automorphism of the k-vector space E.

Claim: The map [ is an isomorphism of kN g s-modules from [h’“}([Q’A]E) to
[hg,(uobg)- A |

Proof: Indeed, for e € E, let 9)e denote the element e of 9" E. Then for
(CL, b) € NQ,(S

(a,b) - [hopa] ([99\]6) — (éﬁl(b))égl((a, b)) 9N,

It follows that
f(m-[w(we)) — (6, ®) A6, 16,1 (9)) (ah9, w10, 10, (b)) -e. (5.19.1)

On the other hand

Since Oy = 04041, we have i
Moreover
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and

“(égéigl(b)) =

Now it follows from (5.19.1) and (5.19.2) that

f(W- (9 ([g,Me)) — (a,b) - 19u0a)- N ()

proving the claim. 0
In addition to the above claim, we observe that if g € @Qﬁ is actually in
Gg,s, then the kN g s-modules £ and U E are isomorphic: Indeed, saying that

g € Gg,s amounts to saying that ég is an inner automorphism i, of L(u), for
some x € L(u) with (g,2) € Ng,s. Then (5.17.3) becomes

Ve € E, (a,b)-e (in 9UE) = q);l((a, b)) -e (in E)

= (a9,b%) - e.

Then the map e € F ~ (g1, 271)-e € WUE is an isomorphism of kN s-
modules.

We can now introduce the semidirect product

éQ,g X (u)h = (@Q,g/GQ,(;) X <u>h

As a set Gg s ¥ (u)? is the cartesian product Gos x (u). For g € G, and

A € (u)?, let [g, )] denote the pair (9Gos,A) in Ggs ¥ (u)". The product in
b

Gos ¥ (u)" is given as follows: For g,h € Go,s and A, p € (u)”, we have

[h, 1][g, Al = [hg, (o 0g) - Al

The above discussion now shows that there is an action of Gg 5 x (u)* on the
group Proj(kNgs). The group Gg s x (u)* also acts on the set Pim*(kNg s)
introduced at Section 5.9: Indeed the restriction of 9N E to Cq(Q) is isomorphic
to the restriction of 9 E, and Ggs permutes the indecomposable kCq(Q)-
modules.

5.20. Yet another (well known) lemma®:

Lemma 5.21: Let H be a finite group, and R be a normal p-subgroup of H.

1. The assignment E — E induces a bijection between the set of isomor-
phism classes of indecomposable projective kH -modules and the set of iso-
morphism classes of indecomposable projective k(H/R)-modules.

8We will not use Assertion 2 of this lemma here, but we state it for completeness.
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2. Moreover if R is central in H, then for any projective kH-modules E and F

dim; Homg g (E, F) = |R| dimyg/ ) (B, ).

Proof: 1. Let E be a projective kH-module, and M be any k(H/R)-module.
Then

Homy, 7 (E, Inffj ), M) 2 Homy g/ gy (Er, M) = Homy, /) (E™, M)

as Er = ET if F is projective. Now the functor M HomkH(E,Infg/RM)

is exact, since inflation is exact, so E is a projective k(H/R)-module. More-
over, the simple kH-modules are inflated from H/R, and the previous isomor-
phism shows that if E is indecomposable, then E¥ has a unique simple k(H/R)-
quotient, thus it is indecomposable.

2. If now R is central in H, then R acts on Homyy (F, F') by left multiplication,
that is (r¢)(e) =r-¢(e) for r € R, e € E, and ¢ € Homyy(E, F'). Moreover,
this action is free, since if £ = F = kH, then Homy(E, F) = kH is free as a
kR-module. Thus

= |R| dimy Homypy/ ) (ER, F™)
= |R| dimy, Homyg1/ ) (E", FT),

as was to be shown. 0

5.22. Let FRy (Ng#;) =F ®z Ry (NEM) denote the Grothendieck group of finite
dimensional kﬁcg(g—modules, extended by F. For a projective kﬁgﬁ—module X,
let [X] denote its image in FR;@(N(;’(;). The group Ggs X (u)* also acts on

Rk(ﬁgﬁ), by permutation of its base consisting of the isomorphism classes of
simple modules.
We denote by I'g s the image of the linear map

b ——b
764 : FProj*(kNg,s) — FRi(N¢ )

induced by E — [E4(@)]. The map 'yé’fg is a map of F(Gg s x (u)")-modules, so
its image I'g 5 is also a F(Gg s x (u)*)-module.
The Ep(L(u))-module V is also a F(Gg 5 x (u)*)-module, thanks to the (sur-

jective) homomorphism of algebras sending [g,\] € F(Gg s x (u)?) to the image
of kG, » in Er(L(u)). Tensoring with V' gives a surjective map

’Yéig ® Idy : FPrOjﬁ(/ﬂNQ’(g) QREV — FQ75 Rr 'V,
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of F(Ggs ¥ (u)")-modules, where the action of Gos ¥ (u)" on both tensor prod-
ucts is diagonal.
Now rephrasing (5.10.3), we get a surjective map

o= @ 0Qs " @ FPrOjﬁ(k’NQ,g) QrV — SL(u),V(G)y
(Q.0)€[P(G,l,u)]

where 0 5 sends E ® v € FProj*(kNg.s) @k V to the image of T(Q, 6, E) ® v in

Spiwy,v(G).
The kernel of this map is the direct sum for (Q,d) € [P(G, L,u)] of the
kernels of its components ¢ ;. By (5.17.4), the sum > E ®uvg is in

E€Pim*(kNg s)
the kernel of o s if and only if

VE € Pim(kNgg), >, dimgHom_, (FZ@ bNE"P)g 5. vz =0,

— Q.6
[9.\E€G Q5% (u)"
EePim*(kNg s)
(5.22.1)

Now Rk(ﬁgﬁ) has a basis consisting of the [Xf] for F € Pim(kNg 5), where

XF is the unique simple quotient of the kﬁgﬁ—module FZ@), So (5.22.1) is
equivalent to

z
S xple > dimy Homﬁgé(Fz(Q)’[Q,z\}E (Q))[QN vp =0
FePim(kNg 5) (9, N€G g, (u)" ’
EcPimf(kNg 5)

in FR;(Ng,s) ® V. This in turn is equivalent to

z
> > dimy Hom, 5( FZ@Q LN g (Q))[ Xrl®[g. A vp = 0.
FePim(kNg 5) [9,M€C .5 (u)" ’
EePim*(kNg 5)
Now for any [g,)\] € Ggs ¥ (u)* and any E € Pim*(kNg.s)

. Z(Q Z(Q Lu
Z dimy, Homﬁ(gé(FZ(Q)7 9\ 7 ( ))[XF] _ [[g,/\]E ( )] _ [g”\]’yQ,g(E)-

FEPim(kNQ,g)

It follows that > E ® vg is in the kernel of o 5 if and only if
E€Pim*(kNg s)
L
> Y. hgsE) @l N ve =0

EePim? (kN s) [9,0€G .5 x (u)*

in FR,(Ng,s) ® V. In other words o¢ s has the same kernel as the map

Z E®ug— Z g, )\](yéig@Id)( Z E®vg).

EcPim!(kNg 5) (g, €Gq 5% (u)* EcPim!(kNg s)

36



It follows that the image of o s is isomorphic to the image of the previous map,
that is

G w)B
Im(og,s) = Try @ (Pg 5 @5 V).
We finally get:

Theorem 5.23: There is an isomorphism of k-vector spaces

a2
Spwyv(G) = @ Try Qo] (Pgs @r V).
(Q,0)€[P(G,L,u)]

5.24. The simple diagonal p-permutation functors. Now we use Theo-
rem 5.23 to describe the simple functors. We assume that F is algebraically
closed, of characteristic 0 or p. Recall that we have an isomorphism of algebras

Er(L{u)) = Out(L{u)) x FRy((u)).

In order to describe the simple &p(L(u))-modules, we set A = FR;((u)) and
Q = Out(L(u)), and we use the results of [12], in our specific situation, as
in Section 4.2 of [10]. First, the simple A-modules are one dimensional, of the
form F,, where z is a generator of (u): For such a generator x, we get an algebra
homomorphism e, : A = FR((u)) — F defined by

YA € (u)E, ex(N) = A(z),

where A : (u) — F* lifts A\. This makes sense because if ) is induced from a
proper subgroup of (u), then A(z) = 0, as x cannot be contained in a proper
subgroup of (u). So e, extends to an algebra homomorphism A = FRy,((u)) — T,
which in turn yields a one dimensional A-module F,. We get all the simple A-
modules in this way.

We also abusively denote by A the composition L(u) — (u) 2 X

Now the stabilizer Q, of F, in Q = Out(L(u)) is the set of classes of v €
Aut(L(u)) such that v(z) = x. This does not depend on the generator z of (u),
and it is equal to Out(L,u). We note that €2, acts trivially on A, since it acts
trivially on (u), so Q; x A =Q, x A.

So any simple &p (L(u))-module V is of the form

V= Indgij(W @ F,),

for some generator = of (u) and some simple FQ,-module W. The action of
Q, x Aon W ®TF, is given by

Vy € Qp, Va € A, Yw e W, (v,a) - (w®1) =ez(a)((v-w)@1).
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Moreover, the isomorphism type of the simple Er(L(u))-module V' is determined
by the isomorphism type of the simple FOut(L, u)-module W, and the choice of
the generator z of (u), up to the action of €2, i.e. up to the action of the subgroup
Aut(L(u))* of Aut(L(u)) consisting of automorphisms which stabilize (u).

Then (L, ) is a D*-pair, such that Out(L,u) = Out(L, ), and choosing x
up to the action of Aut(L(u))* amounts to choosing (L, z) in a set of D®-pairs
such that L(z) = L(u), up to isomorphism of D®-pairs. So up to changing
(L,u) to (L,z), we can parametrize the simple functor Sy, v by the triple
(L,x,W) instead, that is, we can suppose = u in the previous calculations,
and set Sp,,w = Sp(u),v, Where

Out(L (u) X EFi((w)
Vo=Tndg (o (V@ Fu).

By Theorem 5.23, we have that

SLaw(@= @ T (g e ),
(Q,0)€[P(G,L,u))

so we must describe the action of Gg 5 <u>h on V. We recall from 5.14 that
the group homomorphism

g€ Gos— 0, € Out(L{u))

induces an embedding Gg s = Out(L(u)), and we identify G s with its image
via this embedding.

Now the semidirect product Out(L(u))x (u)? embeds in Out(L(u))xFRj((u))
via [0, \] — 0 x X, for § € Out(L(u)) and X € (u). In particular, it acts on V.
We observe moreover that there is an isomorphism of F-vector spaces

V P (v @ W). (*)

YeOut(L{u))/Out(L,u)

With this decomposition, for 6 € Aut(L(u)), A € <u)h, P € Out(L(u))/Out(L,u),
and w € W, we have

[0, - (¥ @ w) = (0 x A)(¢ x 1) - (Id ® w)
—(( o)) X (Ao )) (Id ® w)
= (o) x1)(Idx (Aow)) - (Id®w)
= A(w(u) (B o) x T) - (Id®w)
= A(¥(w) (0 x T)(¢ x T)(Id @ w)
= M¢@) (@ x 1) (¥ w)
= (¥ (u) 0-(¢ @ w),



where ¥ @ w — 0-(1 ® w) denotes the action of # on ¥ @ w € Indgﬁzgé’%)w.

So the group H := Out(L(u)) x (u)* permutes the components 1) @ W of
the direct sum (x), and it permutes them transitively. The stabilizer of the
component Id® W is equal to Hy := Out(L,u) x (u)?, and H; = Out(L, u) x (u)"
as Out(L, u) acts trivially on (u)?. The group Hj acts on Id ®@ W by

V(0,)) € Hy, (0,))-(I1d @ w) = Mu)(Id ® §-w).
It follows that there is an isomorphism of FH-modules
V = Indjj, W,
where the action of (0, ) € Hy on W is given by
(0,2 - w = Xu)f-w.

Now we consider the restriction of V to K¢ 5 := G 5 X (u)*, and use the Mackey
formula. The map
P € Out(L(u)) — Kgs(¢ x 1)H;

induces a bijection from G s\Out(L(u))/Out(L,u) to Kgs\H/H;. This gives

Res%@yé V= EB Indgf"s (wxl)ReSwHéM/’ *)
¥€[Gq,s\Out(L(u))/Out(L,u)]

where

wO = KQ,(swd N Hy
Oy = Kqgs NV Hy ="V"1(,0).

Now Kqs¥"! = (Ggs)¥ x (u)?. Moreover

(Goa)” =166 € Out(L{w)), 3g € No(Q), ) = (iy)°}

= {6 € Out(L{u)) | 3g € N(Q). (“0) 1, = (iy)°}
= {0 € Out(L(u)) | 3g € Na(Q), O, = (ig)w}
= GQ.5y-

Hence
00 = (Gsy x (u)?) N (Out(L, u) x (u)?) = Cgspu % (u)?,

where we have set

Gospu = {0 € Out(L,u) | 3g € Na(Q), 01, = (iy)°}.
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From (*), and omitting the appropriate restriction symbols before I'g 5, we now
get,

WYXl
Try @ (g5 @ Resl V) = D T, 7 (g @ “DResy W)
VE[Gq.5\Out(L(u))/Out(L,uw)]
@ Trlfo ((FQ@)wM & ReSwHéW)
VE[Go.5\Out(L(w))/Out(L,u)]
o D Try” (Dg.sp ® Res B 10).
YE[Gq,s\Out(L(u))/Out(L,u)]

1

This finally gives

G u h u u u n
Sraw(G) = D Try @50 (D 5 @ Resg t((;L, )xx<vi>g w)
(Q.6)E[G\P(G, L) /Out(L(u))] Qo

PE[GQ.5\Out(L(u))/Out(L,u)]

G u h u u u h
b Tif e (Do 5 @ R (410 ")
(Q,8)€[G\P(G,L,u)/Out(L,u)] w

_ o

= D T (g 0 W),
(Q,8)E[G\P(G,Lu)/Out(L,u)]

Out(L,u)x (u)t

where we have omitted the restriction symbol Resé ) in the last line.
Q,5,u

: G i i
Moreover Ter"s’“X<u> = Ter"SoTrgu> , so we first compute T1r<1u> (FCgs@W).
Let y € I'gs and w € W. Then

n{ (yow) = 3 [1LA- (@ w)

AE (u)*
= 3 (LA @ (LA w)
AE(u)*
- < 7 Xw)L, A ~'y) ® w. (**)
)\€<U>h

Let
Egs={meTlgs|VAe W), [1,M]-m = Au) " tm}.
Then one checks easily that the map
1 ~
veTgar pr DL MWL Al
AE (u)*
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is an idempotent endomorphism of I'g) 5, with image Z¢ 5. It follows from (**)
that .
Tr<1u) (FQ#; ® W) =Egs®@W.

Hence

Go.5/—
SL,u,W(G) = @ TI']_ Q8 (‘:'Q,(; XF W)
(Q,0)€[G\P(G,L,u)/Out(L,u)]

Now the space Z¢ 5 is the image by the map 'yé’? of the corresponding subspace
FProj*(kNg5)° = {n € FProj*(kNgs) | VA € (w)?, ny = A(u)"'n}

of FProj*(kNg,s). This space has a basis consisting of the sums Y A(u)Ej,
AE(u)t

where E runs through a set X of representatives of orbits of Pimﬁ(k‘NQ?g) un-

der the action of (u)f. Since Pim*(kNgs) is a (Gg.s.u, (u)f)-biset, this set of

representatives can moreover be chosen invariant by the action of é@,é,u-

.. Ng.s
Now the restriction map ResCG(Q

Pim(k;Cg(Q),u) of isomorphism classes of u-invariant indecomposable projec-
tive kCg(Q)-modules, and this bijection is G 5,-equivariant. Moreover, tak-
ing fixed points by Z(Q) gives a bijection from Pim(kCg(Q),u) to the set
Pim(kCg(Q) /Z (Q),u) of isomorphism classes of wu-invariant indecomposable
projective kCq(Q)/Z(Q)-modules.

Finally, we have proved the following:

) induces a bijection from > to the set

Theorem 5.25: Let F be a field of characteristic 0 or p.

1. The simple diagonal p-permutation functors over F are parametrized by
triples (L,u, W), where (L, u) is a D™-pair and W is a simple FOut(L, u)-
module.

2. The evaluation at a finite group G of the simple functor Sr ., w parame-
trized by the triple (L,u, W) is

St (G) D T2 (FCart (kCa(Q)/Z(Q), w) @s W )

(Q,0)€[G\P(G,L,u)/Out(L,u)]
where FCart (kCG(Q)/Z(Q),u) 1s the image of the map

FPim(kCe(Q)/Z(Q),u) = FR,(Cc(Q)/2(Q))
induced by the Cartan map.

6 Examples
6.1. The functor Sq;r. We apply Theorem 5.25 to the case where L = 1, so
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u =1, and W = F. For a finite group G, we get that (Q,0) € P(G,1,1) if and
only if @ =1 and 0 : L — @ is the identity. Moreover Ggs51 = G = Gg, s0
by Theorem 5.25, we get that

51717F(G) = IFCart(G),

where FCart(G) is the image of the map FProj(kG) — FRy(G) induced by
the Cartan map c© : Proj(kG) — Ry(G). We now show that the previous
isomorphism is quite natural.

For this, we observe that the assignments G — Proj(kG) and G — Ry(G) are
diagonal p-permutation functors: If M is a diagonal p-permutation (kH,kG)-
bimodule, then M is left and right projective, so if A is a projective kG-module,
then M ®iq A is a projective kH-module. Similarly, the functor M Qpg —
changes a short exact sequence of kG-modules into a short exact sequence of
k H-modules.

Moreover, the Cartan maps c& form a morphism of diagonal p-permutation
functors

c: Proj(k—) = Rp(—).

In particular the assignment FCart(—) : G +— FCart(G) is a subfunctor of
FRy(—).

Lemma 6.2: The functor FCart(—) is the unique minimal subfunctor of FRy(—).
It is isomorphic to the simple functor Sy 1F.

Proof: Let F be a subfunctor of FRy(—). Then F(1) < FRi(1) =F, so F(1)
is either 0 or F. Suppose first that F(1) = 0. Let G be a finite group, and

u€ F(G). Thenu= > AgS, where A\g € F. Let T € Irry(G), and Pr be
Selrrg (G)

its projective cover. Then Py € FT2(1,G), so Pr ®xg u € F(1) = 0. But for
S € Irri, (@), we have Py ®pg S = 0 unless S is isomorphic to the dual 7% of 7.
It follows that Apy = 0 for any T' € Irri(G), so u = 0. Hence F =0 if F'(1) = 0.

Suppose now that F'(1) = F, that is F(1) 2 k. If T € Irri(G), then Pr €
FT2(G, 1), so Pr @ k € F(G), for any T € Irry(G). But Py ®p k = Py is the
image of Py by the Cartan map. It follows that F(G) contains FCart(G), so
F > FCart(—). Hence FCart(—) is the unique (non zero) minimal subfunctor
of FRy. Since FCart(1) = F, it follows that FCart(—) = Sq 1 7, completing the
proof. O

Remark 6.3: When I has characteristic p, the functor FCart(—) is a proper

subfunctor of FRy(—), so Lemma 6.2 shows in particular that the category }—I@zpk
is mot semisimple.

6.4. In the case F has characteristic 0, the Cartan matrix has non zero deter-
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minant in F, so the Cartan map Fc® : FProj(kG) — FRy(G) is invertible. So
we have isomorphisms of functors

FPrOj(—) = FRk(—) = 51’1,15‘
in this case. This is Theorem 5.20 in [6].

6.5. The other case we can consider is when F is a field of characteristic p, and
we assume that F = k. We choose a p-modular system (K, O, k), and we assume
that K is big enough for the group G. If S is a simple kG-module, we denote
by ®g : G,y — O the modular character of Pg, where G is the set of p-regular

elementsof G. Ifv = > wgPg, where wg € O, is an element of OProj(kG),
Selrry (G)
we denote by @, : OProj(kG) — O the map > wg®s: Gy — O, and we
Selrr,(G)

call ®, the modular character of v.
Then for a simple kG-module T', the multiplicity of S as a composition factor
of Pt is equal to the Cartan coefficient

. 1 B
C%s = dimy, Homyg(Pr,Ps) = Z Op(z)Pg(xz ).

‘G| QZEGP/

In order to describe the image of the Cartan map kc®, we want to evaluate the
image of this integer under the projection map p : O — k. For this, we denote
by [G)y] a set of representatives of conjugacy classes of Gy, and we observe that
in the field K, we have

1 G _
ch:@ Z ] Or(z)Pg(z )

&, G

B 1 Or(z) Pg(xt) )2
- xGE[G:p/] [Ca(2)] [Cal@)lp \CG(@‘p’CG( )

(21 (x)/ICa(@)lp) (Ps(x™")/|Ca(x)lp)
2 [Ca(@)y]

Co(@)l,.  (65.1)
xG[Gp/]

But since ®g and 7 are characters of projective kG-modules (and since C(z) =
Ci(z71)), the quotients ®7(z)/|Ca(x)|, and @g(z71)/|Cq(z)|, are in O, so

(21 (x)/|Co(@)lp) (Ps (@) /|Ca(x)lp)

e 0.
|CG(5U)p’|

Va € [Gp/L

Now it follows from 6.5.1 that

x x~!
p(cfs) = X[C; | p (%) , (6.5.2)

where [Gy] is a set of representatives of conjugacy classes of the set G of elements
defect zero of G, i.e. the set of p’-elements = of G such that Cg(z) is a p’-group.
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Notation 6.6: For x € Gy, we set

CIDS(a:_l)
T, = IS5 ) g e ORL(G),
G, Z ICa(@)] = #(G)
Selrr(kQ)

where Irr(kG) is a set of representatives of isomorphism classes of simple kG-
modules. We also set

Vox= > P <W> S € kRy(G),

Selrr(kG) |CG (l‘)|

Remark 6.7: We note that I'g , and <, , only depend on the conjugacy class
of z in G, that is I'g » = I'g, 49 and yg,. = 7q,29 for g € G.

By Theorem 6.3.2 of [8] (see also Theorem 6.3.2 of [13]), the elementary divisors
of the Cartan matrix of G are equal to |Cg(x)|p, for € [Gp]. It follows that
the rank of the Cartan matrix modulo p, is equal to the number of conjugacy
classes of elements of defect 0 of G, i.e. the cardinality of [Go]. The following
can be viewed as an explicit form of this result:

Proposition 6.8:

1. Let T be a simple kG-module. Then, in kRi(G),

kY (Pr) = Y p(®r(2)) 76,2

z€[Go]
2. The elements vq, 4, for x € [Go], form a basis of kCart(G) < kRy(G).

Proof: Throughout the proof, we simply write ~, instead of vg, .
1. By 6.5.2, we have

21
WP = Y afos= XY oS )s

Selrr(kG) Selrr(kG) z€[Go)

- ¥ > o(MEe)s

z€[Go] Selrr(kG)

= z os(z7))
B wE[ZGo]p((I)T( ) SeIrr(kG)p < Ca(2)] ) °
= > p(2r(@)) %

IEE[GU]
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2. We first prove that -y, lies in the image of kc®, for any = € Go. So let

x € G, and 15 : (x) — O be the map with value 1 at z and 0 elsewhere. Then

lz|1; = Y- ¢(x71)¢, where ¢ runs through the simple k(z)-modules, i.e. the
¢

group homomorphisms () — O*, is an element of OPy((z)) = ORy({x)). Let
Vg = Ind (|x]1 ). Then v, € OF,(G), and its modular character evaluated at
geGis equal to

®,,(9) = L > @, (g")

|z

heG
ghe(z)
};G = = { otherwise, (6.8.1)
9 =x

where g =g  means that g is conjugate to x in G. Now from Assertion 1, we
get that
kCG(UZ’) = Z p(q)vx(y))’}’y = |Ca()|as (6.8.2)

y€[Go]

S0 7z is in the image of kc¥, since |Cg(z)| # 0 in k.

Now by Assertion 1, the elements ~v,, for x € [Ggl], generate the image
Cart(G) of kcC. They are moreover linearly independent: Suppose indeed
that some linear combination > A;7v;, where A\, € k, is equal to 0. For

z€[Go)
all x € [Go, choose Xz € O such that p(A;) = Az. By (6.8.2), we get an ele-
ment Y. Ay |C oy of OProj(kG) whose modular character has values in the

xG[Go]
maximal ideal J(O) of O. But by (6.8.1), the value at g € G}y of this modular
character is equal to
Z X @y, (9)
|Ca(z)]’

$E[Go]

which is equal to 0 if g ¢ Go, and to gw if g is conjugate to x € [Gp] in G. Tt
follows that A, € J(O), hence A\; = p(A\;) = 0. Since g € G,y was arbitrary, we
get that A\, = 0 for any x € [Go], so the elements ~,, for z € [Gy], are linearly
independent. This completes the proof of Proposition 6.8. 0

6.9. The functors Sy ;. In this section, we consider the case where u = 1,
i.e. the case of simple functors Sy, 1w, where L is a p-group and W is a simple
FOut(L) module. The case where F has characteristic 0 is solved by Corollary 7.4
of [7]. Then we are left with the case where F has characteristic p, and we assume
that F = k. In this situation, for a finite group G, the set P(G, L,1) is just the
set of pairs (Q,d), where @ is a p-subgroup of G and § : L — @ is a group
isomorphism. Moreover, the set [P(G,L,1)] is in one to one correspondence
with a set of representatives of conjugacy classes of subgroups @ of G which are
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isomorphic to L (the bijection mapping (Q,0) to Q). Then the group Gg s, is
just Ng(Q), while G s = QCq(Q). By Theorem 5.25, we have that

SLaw(@= @ mRCD (kcar(Ca(Q)/2(Q) @ W).
(QO)EP(G.L)]

Notation 6.10: Let G be a finite group.

e For a subgroup Q of G and an element z of G, we set Ng(Q,z) = Ng(Q)N
Ca(z) and Cg(Q, 2) = Ca(Q) N Ca(2)

e [For a p-subgroup Q of G, we denote by ((G,Q) the set of elements z in
Ca(Q)y for which Z(Q) is a Sylow p-subgroup of Cq(Q,z). The group
Ng(Q) acts on ((G,Q) by conjugation, and we denote by [((G, Q)] a set
of representatives of orbits under this action.

e For a finite p-group L, we denote by Z(G, L) the set of pairs (Q, z), where
Q is a subgroup of G isomorphic to L, and z is an element of ((G,Q). In
other words

Z(G,L)={(Q,2) | L= Q <G, 2 € Ca(Q)y, Z(Q) € Sy,(Cc(Q,2)) }-

The group G acts on Z(G, L) by conjugation, and we denote by [Z(G, L)]
a set of representatives of orbits under this action.

Theorem 6.11: Let L be a p-group and W be a simple kOut(L)-module. Let
moreover G be a finite group.

1. Let Q) be a p-subgroup of G. Then there is an isomorphism

N N&(Q)/QCa(Q
kCart(Ca(Q)/2(Q) = @ dy@@20al) o ok
2€lC(C.Q)]

of kNG(Q)/QCq(Q)-modules.

2. The evaluation of the simple functor Sp 1w at G is

@ TriVG(Q’Z)/QCG(Q’Z)(W).
(Q,2)€[Z(G,L)]

12

Spa,w(G)
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Proof: 1. For a subgroup @ of G, denote by x — T the projection map

No(Q) = Na(Q) = No(Q)/Q, and set Ta(Q) = QCa(Q)/Q = Ca(Q)/Z(Q).

By Proposition 6.8, the vector space kCart(Cg(Q)) has a basis consisting of
the elements 75, ) > for @ € [Ca(@)o], and the group Ng(Q) permutes these
elements. Now if x € C(Q),, there is an element z € (QCg(Q))p, such that
x = %, and we can moreover assume that z € Cg(Q),. Then the centralizer
of Z in Cg(Q) is equal to QCqc,(0)(2)/Q = QCc(Q,2)/Q. So Z € Cg(Q)o if
and only if @ is a Sylow p-subgroup of QCx(Q, ), or equivalently, if Z(Q) is a
Sylow p-subgroup of C(Q, z), that is z € ((G, Q).

Moreover, an element n € Na(Q) stabilizes vz, ) 5 if and only if 7& o)z =

YCo(Q)nzn 1> hence by Proposition 6.8, if there exists ¢ € C(Q) such that

nzn~1 =¢z¢ !, In other words c—1n € CNe(©) (Z) = Na(Q, 2)/Q, where we set
Na(Q,z) = Na(Q) N Ca(z). So the stabilizer of Vou(@)z I Ng(Q) is equal to
QCc(Q)Ne(Q, z) = Na(Q, 2)Ca(Q).

Hence kCart(C(Q)) is isomorphic to the permutation Ng(Q)/QCq(Q)-
module k((G, Q). The elements v, ) 5 for z € [((G, Q)] form a set of rep-
resentatives of orbits for the action of Ng(Q)/QCq(Q), and the stabilizer of
Vou(Q) 1S the group Ng(Q, 2)Cq(Q)/QCq(Q). This proves Assertion 1.

2. Now Ng(Q,2)Ca(Q)/QCa(Q) = Na(Q, 2)/QCx(Q, z), and Assertion 2 fol-
lows from Theorem 5.25, thanks to the general following fact (see Proposition

5.6.10 (ii) in [1]): If T is a subgroup of a finite group T, if M is a finite dimen-
sional kI'-module and M’ is a finite dimensional kI"'-module, then

T} (Indb M') @, M) = M’ @, Trl' (Resk M)
as k-vector spaces. 0

Remark 6.12: The formula in Assertion 2 of Theorem 6.11 can be viewed
as another instance of similar formulas in Proposition 8.8 of [14], Theorem 2.6
of [15], or Theorem 6.1 of [4].

The following corollary deals with the case of Theorem 6.11 where W is the
trivial module k. First a definition:

Definition 6.13: Let G be a finite group, and L be a finite p-group. An element
z € Gy is said to have defect isomorphic to L if L is isomorphic to a Sylow

p-subgroup of Cq(z).

Corollary 6.14: Let G be a finite group, and L be a finite p-group. Then the
dimension of Sp.11(G) is equal to the number of conjugacy classes of elements
of Gy with defect isomorphic to L.
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Proof: Indeed, if (Q,2) € Z(G, L) then TriVG(Q’Z)/QCG(Q)(k) is equal to zero
if p divides the order of Ng(Q,z2)/QCc(Q), and one dimensional otherwise,
that is, if a Sylow p-subgroup of Ng(Q,z) is contained in QCq(Q,z). But
since z € ((G,Q), the group @ is a Sylow p-subgroup of QCs(Q,z). So
TrJIVG(Q’Z)/QCG(Q)(k) is non zero (and then, one dimensional) if and only if @
is a Sylow p-subgroup of Ng(Q, 2) = N, (»)(Q), i.e. if @ is a Sylow p-subgroup
of Ci(2). 0

List of symbols

O 42 [P(GyLyw)] e 26
ER(G) oo 5 Pim (kCq(Q),u) ..o 41
N 32 Pim? (kN py) « o eeeeeeeanen 2%
FCart(G) ..o 42 By oo 29
FProjﬁ(ij@,é)o """"""""" 41 SL,u,W .......................... 38
FRE(NGg) e 35 TPy, E) oo 25
GO e 27 TO(Q,6,F) e 26

O < v 29 T(F, g E) oo 31
Gng ............................ 28 T(G, L, ’U,) ....................... 24
| N TR 35 THG,Lyou) .o 26
VGG v 35 Og e 29
NPy o 25 O e 29
T 25 W) 31
Nogg o eeeemeee e, 29 Z(GYL) e 46
PG, L)oo 24 CGQ) e 46
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