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Abstract

We extend the notion of a p-permutation equivalence to an equivalence between
direct products of block algebras. We prove that a p-permutation equivalence be-
tween direct products of blocks gives a bijection between the factors and induces a
p-permutation equivalence between corresponding blocks.
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1 Introduction

One of the main themes in representation theory of finite groups is to study equivalences between
block algebras. Various authors have defined different notions of equivalences, such as Puig equiv-
alence [P99], splendid Rickard equivalence [R96], derived equivalence, isotypy, perfect isometry
[Br90], p-permutation equivalence [BoX08],[BoP20], and functorial equivalence [BY22]. Our aim
in this paper is to extend the notion of a p-permutation equivalence to an equivalence between
direct products of blocks.

Let G and H be finite groups. Let p > 0 be a prime and let (K,O, k) denote a p-modular
system where O is a complete discrete valuation ring with residue field k of characteristic p and
field of fractions K of characteristic 0. Suppose that O contains a root of unity whose order is
equal to the exponent of G×H.

Let A be a sum of blocks of OG and B a sum of blocks of OH. Let T∆(A,B) denote the
Grothendieck group with respect to split short exact sequences of p-permutation (A,B)-bimodules
whose indecomposable summands have twisted diagonal vertices when regarded as O[G × H]-
modules. In [BoP20], Boltje and Perepelitsky define a p-permutation equivalence between A and
B as an element γ ∈ T∆(A,B) such that

γ ·H γ◦ = [A] ∈ T∆(A,A) and γ◦ ·G γ = [B] ∈ T∆(B,B)

where γ◦ is theO-dual of γ and where ·H is tensor product overOH. Among many other interesting
and important properties of p-permutation equivalences, they proved that if γ is a p-permutation
equivalence between A and B, then there is a bijection between the block summands of A and B
and γ induces a p-permutation equivalence between the corresponding blocks, see [BoP20, The-
orem 10.10]. We show that a similar phenomenon holds for p-permutation equivalences between
direct products of blocks.
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1.1 Definition Let A1 × · · · × An, B1 × · · · × Bm and C1 × · · · × Cl be direct products of block
algebras of finite groups. Let γ = (γij) and γ′ = (γ′jk) be matrices with entries γij ∈ T∆(Ai, Bj)

and γ′jk = T∆(Bj , Ck). We denote by γ ◦ γ′ the product of the matrices γ and γ′. More precisely,

(γ ◦ γ′)i,k =

m∑
j=1

γij ·Hj
γ′jk ∈ T∆(Ai, Ck) .

1.2 Definition Let G1, · · · , Gn and H1, · · · , Hm be finite groups. Let Ai ∈ Bl(OGi) and Bj ∈
Bl(OHj) be block algebras for i = 1, · · · , n and j = 1, · · · ,m. A p-permutation equivalence
between the direct product algebras A1 × · · · ×An and B1 × · · · ×Bm is a matrix γ = (γij) where
γij ∈ T∆(Ai, Bj) such that

γ ◦ γ◦ =


[A1] 0 · · · 0

0 [A2] 0 · · · 0
...

...
. . .

...
0 · · · 0 · · · [An]

 and γ◦ ◦ γ =


[B1] 0 · · · 0

0 [B2] 0 · · · 0
...

...
. . .

...
0 · · · 0 · · · [Bm]


where γ◦ = ((γ◦i,j)ij)

t.

Our main result is the following.

1.3 Theorem Let G1, · · · , Gn and H1, · · · , Hm be finite groups. Let Ai ∈ Bl(OGi) and Bj ∈
Bl(OHj) be block algebras for i = 1, · · · , n and j = 1, · · · ,m. Assume that O contains a root
of unity of order the exponent of Gi and Hj for each i and j. Let γ = (γij) be a p-permutation
equivalence between the direct products A1 × · · · × An and B1 × · · · × Bm of block algebras.
Then n = m and in each row and in each column of γ, there exists precisely one non-zero element.
Moreover, if γij is the non-zero element in the i-th row and j-th coloumn, then γij is a p-permutation
equivalence between Ai and Bj .

2 The proof of the main theorem

Throughout G,G1, · · · , Gn, H,H1, · · · , Hm denote finite groups. Also, (K,O, k) denotes a p-
modular system where O is a complete discrete valuation ring with residue field k of characteristic
p and field of fractions K of characteristic 0. We suppose that O contains a root of unity of order
the exponent of G,Gi, H and Hj for all i and j. We follow the proof of [BoP20, Theorem 10.10]
closely.

2.1 We denote by R(KG) and R(kG) the Grothendieck groups with respect to short exact se-
quences of KG-modules and kG-modules, respectively, and by T (OG) and T (kG) the Grothendieck
groups with respect to split short exact sequences of p-permutationOG-modules and p-permutation
kG-modules, respectively.

We denote by −∗ the anti-involution g 7→ g−1 of any group algebra of a group G. If A is a block
of OG and B is a block of OH, then we can regard any (A,B)-bimodule M as an A⊗B∗-module
via the isomorphism O(G×H) ∼= OG⊗O OH. We set R(KG,KH) := R(K[G×H]) and similarly
define R(A,B), T (A,B) etc.

Let P 6 G and Q 6 H be subgroups and φ : Q → P a group isomorphism. The subgroup
∆(P, φ,Q) := {(φ(q), q) | q ∈ Q} 6 G×H is called twisted diagonal. We denote by T∆(A,B) the
Grothendieck group with respect to split short exact sequences of p-permutation (A,B)-bimodules
whose indecomposable summands have twisted diagonal vertices when regarded as O[G × H]-
modules.
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2.2 Let ∆(P, φ,Q) 6 G × H be a p-subgroup. Following the notation in [BoP20, 10.1], for
an element γ ∈ T∆(OG,OH), we write γ(P, φ,Q) for the Brauer construction γ(∆(P, φ,Q)) ∈
T (kNG×H(∆(P, φ,Q)). Set N := NG×H(∆(P, φ,Q). The corresponding elements in the commu-
tative diagram (see [BoP20, 9.1(c)])

T (ON) R(KN)

T (kN) R(kN)

∼=

κN

dN

ηN

will be denoted by

γ(P, φ,Q) µ(P, φ,Q)

γ(P, φ,Q) ν(P, φ,Q)

where κN is induced by the scalar extension K ⊗O −, dN is the decomposition map and ηN is
induced by the map [M ] 7→ [M ].

2.3 Let A be a block of kG and B a block of kH. Let (P, e) be an A-Brauer pair. We denote by
ΛH the set of pairs (φ, (Q, f)) where (Q, f) is a kH-Brauer pair and φ : Q→ P is an isomorphism.

The group NG(P, e)×H acts on ΛH via (g, h) · (φ, (Q, f)) = (cgφc
−1
h ,

h
(Q, f)).

We also set ΛB ⊆ ΛH to be the subset consisting of the pairs (φ, (Q, f)) where (Q, f) is a
B-Brauer pair. Note that ΛB is still an NG(P, e)×H-set via the above action. We denote by Λ̃H
a set of representatives of the H-orbits of ΛH and set Λ̃B := Λ̃H ∩ ΛB .

The crucial point in the proof of Theorem 1.3 is to observe that Lemma 10.3 in [BoP20] can
be generalized as follows.

2.4 Proposition Let A ∈ Bl(OG) be a block algebra and let B = B1 × · · · × Bm be a direct
product of block algebras where Bj ∈ Bl(OHj). For each j ∈ {1, · · · ,m}, let γj ∈ T∆(A,Bj) be
such that

γ1 ·H1
γ◦1 + · · ·+ γm ·Hm

γ◦m = [A] ∈ T∆(A,A) . (1)

Let also (P, e) be an A-Brauer pair. Consider the set of pairs ΛBj ⊆ ΛHj as in 2.3. Then there
exists a unique j ∈ {1, · · · ,m} and a unique Hj-orbit of pairs (φj , (Qj , fj)) ∈ ΛBj

such that

eµj(P, φj , Qj)fj 6= 0 in R(KCG(P )e,KCHj (Qj)fj) .

Moreover, eµj(P, φj , Qj)fj is a perfect isometry between KCG(P )e and KCHj (Qj)fj and
eνj(P, φ,Qj)fj 6= 0 in R(kCG(P )e, kCHj (Qj)fj).

Proof The proof of this lemma is similar to the proof of [BoP20, Lemma 10.3]. The key point
is to observe that Corollary 8.8 in [BoP20] is still applicable in this case. We add a sketch of the
proof for the convenience of the reader.
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Apply the Brauer construction with respect to ∆(P ) to Equation (1). The equality

[kCG(P )e] = [eA (∆(P )) e] = e

 m∑
j=1

(
γj ·Hj

γ◦j
)

(∆(P ))

 e

=

m∑
j=1

∑
(φj ,(Qj ,fj))∈Λ̃Hj

eγj (P, φj , Qj) fj ·CHj
(Qj) fjγ◦(Qj , φ

−1
j , P )e

holds in T∆ (kCG(P )e, kCG(P )e). Lifting this equation from k to O and extending the scalars to
K, we get

[KCG(P )e] =

m∑
j=1

∑
(φj ,(Qj ,fj))∈Λ̃Hj

eµj (P, φj , Qj) fj ·CHj
(Qj) (eµj (P, φj , Qj) fj)

◦

in R (KCG(P )e,KCG(P )e). The statement follows now from Corollaries 8.8 and 8.11 in [BoP20].

Now we can prove a weaker version of Theorem 1.3.

2.5 Corollary Let A = A1 × · · · × An and B = B1 × · · · × Bm be direct products of block
algebras where Ai ∈ Bl(OGi) and Bj ∈ Bl(OHj) with ai and bj their respective identity elements.
Assume that there exists a p-permutation equivalence γ = (γij) between A and B. Then for each
i ∈ {1, · · · , n} there exists a unique j ∈ {1, · · · ,m} such that

µij 6= 0 in R(KGiai,KHjbj) .

This defines a bijection between the sets {1, · · · , n} and {1, · · · ,m}. In particular, we have n = m
and if Ai and Bj are corresponding blocks via the bijection above, then µij is a perfect isometry
between KGiai and KHjbj .

Proof Let i ∈ {1, · · · , n}. Since γ is a p-permutation equivalence between A and B, we have

γi1 ·H1
γ◦i1 + · · ·+ γim ·Hm

γ◦im = [Ai] ∈ T∆(Ai, Ai) .

Proposition 2.4 applied to the Ai-Brauer pair ({1}, ai) implies that there exists a unique j ∈
{1, · · · ,m} such that

µij 6= 0 in R(KGiai,KHjbj) .

Since by symmetry, a similar statement holds for every element j ∈ {1, · · · ,m} it follows that γ is
a square matrix and in each row and in each column of γ there exists a unique entry with a nonzero
image in the corresponding character ring. The last statement also follows from Proposition 2.4.

The following is essentially Lemma 10.4 in [BoP20]. One can easily follow the proof of
Lemma 10.4 in [BoP20] and make the necessary changes as we did in the proof of Proposition 2.4
to prove it.
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2.6 Proposition Let A ∈ Bl(OG) be a block algebra and let B = B1 × · · · × Bm be a direct
product of block algebras where Bj ∈ Bl(OHj). For each j ∈ {1, · · · ,m}, let γj ∈ T∆(A,Bj) be
such that

γ1 ·H1
γ◦1 + · · ·+ γm ·Hm

γ◦m = [A] ∈ T∆(A,A) . (2)

Let (P, e) be an A-Brauer pair and set I = NG(P, e) and X = NI×I (∆(P )). For each j ∈
{1, · · · ,m} consider the set ΛBj together with its I×Hj-action from 2.3. For λj = (φj , (Qj , fj)) ∈
ΛBj we set

J(λj) := NHj
(Qj , fj) , I(λj) := N(I,φj ,J(λj)) 6 I, and X(λj) := NI×J(λj)(∆(P, φj , Qj)) .

Then, X ∗X(λj) = X(λj), and for each χ ∈ Irr(KX(e⊗ e∗)), there exists a unique j ∈ {1, · · · ,m}
and a unique I ×Hj-orbit of pairs λj = (φj , (Qj , fj)) ∈ ΛBj such that

χ ·X,X(λj)
G eµj(P, φj , Qj)fj 6= 0 in R(K[X(λj)](e⊗ f∗j ) .

Moreover, for each λj = (φj , (Qj , fj)) ∈ ΛBj satisfying this condition, one has

χ ·X,X(λj)
G eµj(P, φj , Qj)fj ∈ ±Irr(K[X(λj)](e⊗ f∗j ) .

2.7 Remark Suppose that we have

γ1 ·H1
γ◦1 + · · ·+ γm ·Hm

γ◦m = [A] ∈ T∆(A,A) (3)

as in Proposition 2.4. Since by Proposition 2.6, the results of Lemma 10.4 in [BoP20] hold, it
follows that Corollaries 10.5 and 10.6 in [BoP20] are still valid in this case as well.

2.8 Corollary Let A ∈ Bl(OG) be a block algebra with identity element a and let B = B1 ×
· · · ×Bm be a direct product of block algebras where Bj ∈ Bl(OHj) with identity element bj . For
each j ∈ {1, · · · ,m}, let γj ∈ T∆(A,Bj) be such that

γ1 ·H1 γ
◦
1 + · · ·+ γm ·Hm γ◦m = [A] ∈ T∆(A,A) .

Then there exists a unique j ∈ {1, · · · ,m} such that γj 6= 0 in T∆(A,Bj).

Proof By Corollary 2.5, there exists a unique j ∈ {1, · · · ,m} such that

µj 6= 0 in R(KGa,KHjbj) .

This means that for any j′ ∈ {1, · · · ,m} with j′ 6= j, one has µj′ = 0 in R(KGa,KHj′bj′).
For every A⊗B∗j′ -Brauer pair (∆(P, φ,Q), (e⊗ f∗)), since ({1}, (a⊗ bj′)) 6 (∆(P, φ,Q), (e⊗ f∗))
holds, [BoP20, Corollary 10.6] implies that

eµj′(P, φ,Q)f = 0 in R(K[CG(P )]e,K[CHj
(Q)]f) .

Therefore, by [BoP20, Corollary 10.5] one has

eµj′(P, φ,Q)f = 0 in R(K[NG×Hj (∆(P, φj , Qj))](e⊗ f∗) .

This shows that the element γj′ is in the kernel of the injective map in [BoP20, Proposi-
tion 9.2(b)] and hence equals to zero.

Proof of Theorem 1.3: The fact that n = m follows from Corollary 2.5. For each i ∈ {1, · · · , n},
by Corollary 2.8, there exists a unique j ∈ {1, · · · ,m} such that γij 6= 0 in T∆(Ai, Bj). This proves
the theorem.
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