
p-Bifree biset functors

Olcay COKUN1 and Deniz YILMAZ2

1 Center for Mathematical Research, ASOIU, Baku, Azerbaijan
olcay.coshkun@asoiu.edu.az

2 Bilkent University, Ankara, Turkey
d.yilmaz@bilkent.edu.tr

Abstract

We introduce and study the category of p-bifree biset functors for a fixed prime
p, defined via bisets whose left and right stabilizers are p′-groups. This category
naturally lies between the classical biset functors and the diagonal p-permutation
functors, serving as a bridge between them. Every biset functor and every diagonal
p-permutation functor restricts to a p-bifree biset functor.

We classify the simple p-bifree biset functors over a field K of characteristic zero,
showing that they are parametrized by pairs (G,V ), where G is a finite group and V is
a simple KOut(G)-module. As key examples, we compute the composition factors of
several representation-theoretic functors in the p-bifree setting, including the Burnside
ring functor, the p-bifree Burnside functor, the Brauer character ring functor, and
the ordinary character ring functor. We further investigate the classical simple biset
functors SG,C where G is a B-group.
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1 Introduction

The theory of biset functors, which was introduced and extensively developed by Bouc, oc-
cupies a central position in the functorial representation theory of finite groups. It enables
a unified treatment of representation rings when the structural maps restriction, induc-
tion, deflation, inflation, and isogation are present. The completion of the classification
of endo-permutation modules of p-groups [Bc06] and the description of the unit group of
Burnside rings of p-groups [Bc07], both due to Bouc, are two notable applications of the
theory of biset functors.

Diagonal p-permutation functors, introduced by Bouc and the second author [BY20],
provide a functorial framework for studying structures involving actions of p-permutation

1



bimodules with additional constraints. By replacing bisets with p-permutation bimodules
whose vertices are twisted diagonals, this theory captures essential representation-theoretic
phenomena, particularly those related to block theory. Diagonal p-permutation functors
have already found applications in the block theory of finite groups; see, for instance, the
finiteness result in terms of functorial equivalences, Theorem 10.6 in [BY22], which is in
the spirit of Puig’s and Donovan’s finiteness conjectures.

Although the two theories of biset functors and diagonal p-permutation functors are
both defined on categories of finite groups, there is no direct functorial connection between
them. However, their morphisms are related as follows. A diagonal p-permutation bimod-
ule is a p-permutation bimodule whose indecomposable summands have (twisted) diagonal
subgroups as vertices. The linearization map applied to bisets yields permutation, and
hence p-permutation bimodules. In particular, the elementary bisets

ResGH (H 6 G), IndGH (H 6 G), Iso(f) (f : G
∼−→ H),

InfGG/N ,DefGG/N (N EG, N a normal p′-subgroup)

give rise to diagonal p-permutation bimodules via linearization. In contrast, inflations and
deflations along general normal subgroups do not yield diagonal p-permutation bimodules
under linearization; see [BY20, Lemma 4.2]. This obstruction prevents the existence
of a direct functor between the categories of biset functors and diagonal p-permutation
functors.

Motivated by this observation, we introduce the notions of p-bifree bisets and p-bifree
biset functors. In fact, these are special cases of general notions introduced by Bouc [Bc10,
Section 4.1.9] and by Webb [W00, Section 8]. A p-bifree biset is a biset with p′-stabilizers
on both sides. The category of p-bifree bisets is similar to the classical biset category, but
only includes inflations and deflations via normal p′-subgroups. For a commutative ring
R with unity, we denote by RC∆,p the category whose objects are finite groups and whose
morphisms are given by the R-linear extension of the Grothendieck group RB∆,p(H,G)
of p-bifree (H,G)-bisets. An R-linear functor from RC∆,p to the category of R-modules is
called a p-bifree biset functor over R.

With this definition, the category of p-bifree biset functors lies naturally between
classical biset functors and diagonal p-permutation functors. On one hand, it contains
all classical biset functors via restriction to the p-bifree part of the biset category. On
the other hand, diagonal p-permutation functors factor through it via the linearization
map, since only bisets with p′-stabilizers induce diagonal p-permutation bimodules under
linearization. In this sense, p-bifree biset functors form a common generalization of both
theories, effectively building a bridge between them.

Using Bouc’s theory on linear functors [Bc96], we show that the simple p-bifree biset
functors S∆,p

G,V over R are parametrized by the pairs (G,V ) of a finite group G and a
simple ROut(G)-module V . We also consider various representation rings as p-bifree biset
functors and determine their composition factors. Our main results can be summarized
as follows.
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• Let K be a field of characteristic zero. We prove that (Corollary 4.9) the composition
factors of the Burnside ring as the p-bifree biset functor over K are exactly the
functors S∆,p

G,K where G is a B∆,p-group. See Definition 4.3 for the definition of

B∆,p-group. The proof follows [Bc10, Chapter 5] very closely.

• The composition factors of the representable p-bifree biset functor KB∆,p(−, 1) are
exactly the functors S∆,p

G,K where G is a B-group of p′-order (Corollary 5.4).

• Let G be a finite group. The K-dimension of S∆,p
1,K (G) is equal to the number of

conjugacy classes of cyclic p′-subgroups of G (Theorem 6.1).

• We also investigate the p-bifree biset functor structures of the ordinary and Brauer
character rings of finite groups. Let C be an algebraically closed field of characteristic
zero and let k be an algebraically closed field of characteristic p > 0. Let RC(G) and
Rk(G) denote the Grothendieck groups of CG and kG-modules, respectively. We
show that both CRC(−) and CRk(−) are semisimple p-bifree biset functors. One
has

CRC ∼=
⊕
(m,ξ)

S∆,p
Z/mZ,Cξ

where (m, ξ) runs through the set of pairs consisting of a positive integer m and a p-
primitive character (see Definition 7.4) ξ of (Z/mZ)× (Corollary 7.7). Furthermore,

CRk ∼=
⊕
(m,ξ)

S∆,p
Z/mZ,Cξ

where (m, ξ) runs through a set of pairs consisting of a positive p′-integer m and a
primitive character ξ of (Z/mZ)× (Corollary 8.4). As a result of these we obtain a
short exact sequence

0 −→
⊕
(m,ξ)

S∆,p
Z/mZ,Cξ

−→ CRC −→ CRk −→ 0

of p-bifree biset functors, where (m, ξ) runs through the set of pairs consisting of a
positive integer m divisible by p and a p-primitive character ξ of (Z/mZ)×.

• Finally, we consider some simple biset functors as p-bifree biset functors. Let SG,V
denote the simple biset functor associated to the pair (G,V ) of a finite group G and
a simple COut(G)-module V . Then, if K is a B-group, we have an isomorphism

SK,C ∼=
⊕
H

S∆,p
H,C

of p-bifree biset functors, where H runs over a set of isomorphism classes of B∆,p-
groups with the property β(H) ∼= K (Theorem 9.2).
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2 Category of p-bifree bisets

Let p > 0 be a prime and let G,H and K denote finite groups.
We denote by p1 : H ×G→ H and p2 : H ×G→ G the canonical projections. For a

subgroup L 6 H ×G, we set

k1(L) = {h ∈ H | (h, 1) ∈ L} and k2(L) = {g ∈ G | (1, g) ∈ L} .

One has canonical isomorphisms

q(L) := L/(k1(L)× k2(L))→ pi(L)/ki(L)

for i = 1, 2, induced by the projections pi.

2.1 Definition Let X be an (H,G)-biset. We say X is a p-bifree (H,G)-biset if the
left and right stabilizers of the H × G-orbits of X are p′-groups. In other words, X is a
disjoint union of transitive (H,G)-bisets of the form [(H ×G)/L] where k1(L) and k2(L)
are p′-groups.

2.2 (a) Let Hset
∆,p
G denote the category of p-bifree (H,G)-bisets. Using the Mackey

formula, one shows that the composition of bisets induces a bilinear map

Kset∆,pH × Hset
∆,p
G → Kset∆,pG .

Let B∆,p(H,G) denote the Grothendieck group of the category Hset
∆,p
G . The product

of bisets induces a well-defined map

− ·H − : B∆,p(K,H)×B∆,p(H,G)→ B∆,p(K,G) . (1)

Recall from [Bc10] that every transitive (H,G)-biset can be written as a product of five
elementary bisets:[

H ×G
L

]
= IndHp1(L) ◦ Inf

p1(L)
p1(L)/k1(L) ◦ Iso(f) ◦Def

p2(L)
p2(L)/k2(L) ◦ ResGp2(L) ,

where f : p2(L)/k2(L) → p1(L)/k1(L) is the canonical isomorphism. One has InfGG/N ∈
B∆,p(G,G/N) if and only if N is a p′-subgroup of G. Similarly, DefGG/N ∈ B∆,p(G/N,G)

if and only if N is a p′-subgroup of G. Hence B∆,p(H,G) is generated by bisets of the
above form for k1(L) and k2(L) p′-groups.

(b) Let R be a commutative ring with 1. Let RC∆,p denote the following category:

• objects: finite groups,

• HomRC∆,p(G,H) = R⊗Z B∆,p(H,G) = RB∆,p(H,G),
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• composition is induced from the map in (1),

• IdG = [IdG] = [G].

(c) Let G be a finite group. We set

IG =
∑
|H|<|G|

RB∆,p(G,H) ◦RB∆,p(H,G) .

Note that IG is an ideal of the endomorphism ring EndRC∆,p(G) = RB∆,p(G,G). The
quotient

E∆,p(G) := RB∆,p(G,G)/IG

is called the essential algebra of G in RC∆,p.
A transitive p-bifree (G,G)-biset (G ×G)/L has zero image in E∆,p(G) if and only if

|q(L)| < |G|. Hence as in the usual biset category, see [Bc10, Proposition 4.3.2], we have
an isomorphism

E∆,p(G) ∼= ROut(G) .

3 p-bifree biset functors

In this section, we classify the simple objects in the category F∆,p
R of p-bifree biset functors

over a commutative ring R. Our construction follows the general theory of linear biset
functors developed by Bouc in [Bc96].

3.1 Definition An R-linear functor RC∆,p → RMod is called a p-bifree biset functor over
R.

Together with natural transformations, p-bifree biset functors over R form an abelian
category which we denote by F∆,p

R .
By [Bc10, Theorem 4.3.10], the simple p-bifree biset functors over R are parametrized

by the pairs (G,V ) where G is a finite group and V is a simple ROut(G)-module. For a
given pair (G,V ) we denote the corresponding simple p-bifree biset functor by S∆,p

G,V .

3.2 Remark (a) Every biset functor becomes a p-bifree biset functor via the restriction
along the inclusion RC∆,p ⊆ RC, where RC denotes the usual biset category over R.

(b) Let Rpp∆
k denote the diagonal p-permutation category over R, see [BY20, Def-

inition 2.6], or [BY22, Section 1]. The linearization map X 7→ kX induces a functor
RC∆,p → Rpp∆

k . This makes every diagonal p-permutation functor over R a p-bifree biset
functor.
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3.3 Definition Let F be a p-bifree biset functor over R. A simple p-bifree biset functor
S is called a composition factor of F , if there exist subfunctors F2 < F1 ≤ F such that
F1/F2

∼= S.

Note that if F is a p-bifree biset functor over a field, then F admits a composition
factor. This follows since the proof of [Bc18, Lemma 9.7(i)] applies verbatim to p-bifree
biset functors; see also the remarks at the beginning of [BST13, Section 3].

3.4 Definition Let F be a p-bifree biset functor and let G be a finite group. We define
the submodules F (G) and JF (G) of F (G) by

F (G) =
⋂

|H|<|G|
α∈RB∆,p(H,G)

Ker(F (α) : F (G)→ F (H))

and

JF (G) =
∑
|H|<|G|

α∈RB∆,p(G,H)

Im(F (α) : F (H)→ F (G)) .

Notice that both F (−) and JF (−) are subfunctors of F . The subfunctor F (−) is called
the restriction kernel of F . These restriction kernels serve as a tool for detecting minimal
groups and composition factors. They will be used repeatedly in later sections to describe
the subfunctor structure and to prove that certain families of simple functors exhaust all
composition factors. See Appendix for more properties of the restriction kernels.

4 Burnside ring as a p-bifree biset functor

Let R be a commutative ring with identity and let K be a field of characteristic zero. The
Burnside functor RB : RC∆,p → RMod is defined as the restriction of the Burnside biset
functor RB to the p-bifree biset category, that is,

• G 7→ RB(G) := R⊗Z B(G).

• X ∈ RB∆,p(H,G) 7→ (RB(X) : RB(G)→ RB(H), U 7→ X ·G U).

In this section we analyze the structure of RB. It turns out that the results are very
similar to those in Chapter 5 of [Bc10], where the structure of the Burnside functor is
described in terms of B-groups. In our setting, the same arguments apply almost line by
line once one restricts to inflations and deflations along normal p′-subgroups. We include
the full details here for completeness and to set up the theory in the context of p-bifree
biset functors. The notion of a B∆,p-group plays the role of a B-group in this setting,
and many structural results, including the parametrization of composition factors and the
poset of subfunctors, carry over with suitable modifications. The first and key result is the
following characterization of evaluations of subfunctors. We refer to [Bc10, Lemma 5.2.1]
for its proof.
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4.1 Lemma Let F be a p-bifree biset subfunctor of RB. Then for any finite group G,
the R-module F (G) is an ideal of RB(G).

Note that KB(G) is a split semisimple K-algebra. In particular, every ideal of KB(G) is
generated by a set of primitive idempotents.

The primitive idempotents eGH of KB(G) are indexed by the conjugacy classes [sG]

of subgroups H 6 G. Let e∆,p
G denote the p-bifree biset subfunctor of KB generated by

eGG ∈ KB(G). We note that this is in general smaller than the biset subfunctor eG of KB
generated by eGG. Recall from [Bc10, Theorem 5.2.4] that for a normal subgroup N of G
we have

DefGG/Ne
G
G = mG,Ne

G/N
G/N ,

where the deflation number mG,N is given by

mG,N =
1

|G|
∑

XN=G

|X|µ(X,G) .

Recall from [Bc10, Definition 2.3.12] that a section (Y,X) of a finite group G is a
pair of subgroups of G with X E Y . The quotient group Y/X is called the subquotient
associated with (Y,X).

4.2 Proposition Let G be a finite group. The following conditions are equivalent.

(i) The evaluation of the subfunctor e∆,p
G vanishes on all groups of smaller order, that

is, e∆,p
G (H) = {0} for all |H| < |G|.
(ii) If e∆,p

G (H) 6= {0} for some finite group H, then G is isomorphic to a subquotient
Y/X associated with a section (Y,X) of H with X a p′-group.

(iii) The deflation number mG,N vanishes for every non-trivial normal p′-subgroup
N EG.

(iv) The deflation DefGG/Ne
G
G is zero in KB(G/N) for every non-trivial normal p′-

subgroup N EG.

Proof The equivalence (iii) ⇐⇒ (iv) follows directly from Theorem 5.2.4 in [Bc10].
Suppose (i) holds. Let N EG be a non-trivial p′-subgroup. Then the image of eGG under

deflation lies in e∆,p
G (G/N) = {0}, so DefGG/Ne

G
G = 0, and hence (iv) holds. Now suppose

(iv) holds and let H be a finite group such that e∆,p
G (H) 6= {0}. Then there exists

ϕ ∈ KB∆,p(H,G) such that ϕ(eGG) 6= 0. In particular there exist sections (Y,X) of H and
(T, S) of G, with X and S p′-groups, and an isomorphism f : T/S → Y/X such that

IndHY InfYY/XIso(f)DefTT/SResGT (eGG) 6= 0.

By [Bc10, Theorem 5.2.4], the restriction of eGG to a proper subgroup is zero, hence T = G.
Condition (iv) further implies that S = 1. This proves (ii). Finally, (ii)⇒ (i) is immediate.
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4.3 Definition A finite group G is called a B∆,p-group if for any non-trivial normal p′-
subgroup N of G, the deflation number mG,N is equal to zero.

4.4 Remark When the condition on N is removed, we recover Bouc’s definition of a
B-group. These two definitions can be compared as follows:

(i) Every B-group is a B∆,p-group.

(ii) Every p-group is a B∆,p-group.

(iii) A p-group which is also a B-group is either trivial or elementary abelian of rank
2, by 5.6.9 of [Bc10].

(iv) A p′-group is a B∆,p-group if and only if it is a B-group.

4.5 Theorem Let G and H be finite groups. Then the following hold:

(i) If H is isomorphic to a quotient of G by a p′-subgroup, then e∆,p
G ⊆ e∆,p

H .

(ii) If H is a B∆,p-group and e∆,p
G ⊆ e∆,p

H , then H is isomorphic to a quotient of G by
a p′-subgroup.

(iii) If F is a subfunctor of KB and H is a minimal group of F , then H is a B∆,p-group,
F (H) = KeHH , and e∆,p

H ⊆ F . In particular, e∆,p
H (H) = KeHH if H is a B∆,p-group.

(iv) The minimal group δp(G) of e∆,p
G is uniquely determined up to isomorphism. One

has e∆,p
G = e∆,p

δp(G), and δpG) is isomorphic to a quotient of G by a normal p′-subgroup.

Moreover, for any normal p′-subgroup N EG such that G/N ∼= δp(G), one has mG,N 6= 0.

(v) Let β(G) be a minimal group of the biset subfunctor eG of KB generated by the
idempotent eGG. Then β(δp(G)) ∼= β(G).

Proof (i) Let N EG be a p′-subgroup such that G/N ∼= H via an isomorphism f . Then,
by [Bc10, Theorem 5.2.4], one has

eGGInfGG/N Iso(f)eHH = eGG,

so eGG ∈ e∆,p
H (G) and hence e∆,p

G ⊆ e∆,p
H .

(ii) Since eGG ∈ e∆,p
H (G) = KB∆,p(G,H)eHH , there exist sections (T, S) of G and (Y,X)

of H with S and X p′-groups and an isomorphism f : Y/X → T/S such that

eGGIndGT InfTT/SIso(f)DefYY/XResHY e
H
H 6= 0.

As in previous arguments, since the restriction of eHH to a proper subgroup is zero, we have
Y = H, and since H is a B∆,p-group, we get X = 1. Also because eGG[G/L] = 0 for any
proper subgroup L, we have T = G and the result follows.

(iii) This follows from the proof of Proposition 5.4.9 in [Bc10] applied in the p-bifree
setting. The minimality of H implies that F (H) is generated by eHH , and hence e∆,p

H ⊆ F .
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(iv) This is a direct adaptation of Proposition 5.4.10 in [Bc10], replacing all normal
subgroups with normal p′-subgroups.

(v) First note that the group β(G) is uniquely determined, up to isomorphism, by
[Bc10, Proposition 5.4.10]. Let N E G be a p′-normal subgroup with G/N ∼= δp(G). By
Part (iv), we have mG,N 6= 0 which is equivalent to β(δp(G)) ∼= β(G/N) ∼= β(G) by [Bc10,
Theorem 5.4.11].

The following theorem collects properties of the minimal group δp(G) of the subfunctor

e∆,p
G . As in the classical case, the key results follow from Theorem 5.4.11 in [Bc10], and

the same arguments apply here with the necessary modifications to the p-bifree setting.

4.6 Theorem Let G be a finite group.

(i) Let H be a B∆,p-group that is isomorphic to a quotient of G by a normal p′-subgroup.
Then H is also isomorphic to a quotient of δp(G) by a normal p′-subgroup.

(ii) Let N EG be a normal p′-subgroup. The following are equivalent:

(a) mG,N 6= 0,

(b) δp(G) is isomorphic to a quotient of G/N by a p′-subgroup,

(c) δp(G) ∼= δp(G/N).

(iii) In particular, if N E G is a normal p′-subgroup, then G/N ∼= δp(G) if and only if
G/N is a B∆,p-group and mG,N 6= 0.

Let B∆,p-gr denote the class of B∆,p-groups, and let [B∆,p-gr] be a fixed set of represen-
tatives of their isomorphism classes. Define a relation � on B∆,p-gr by declaring G� H
if and only if H is isomorphic to a quotient of G by a p′-group. A subset M⊆ B∆,p-gr is
said to be closed if, whenever H ∈M and G� H, it follows that G ∈M.

The following result describes the lattice of subfunctors of the Burnside functor KB in
terms of these closed subsets. Its proof is the same as that of Theorem 5.4.14 in [Bc10],
with the necessary modifications to the p-bifree bisets.

4.7 Theorem Let S be the set of p-bifree biset subfunctors of the Burnside functor
KB, ordered by inclusion, and let T be the set of closed subsets of the set [B∆,p-gr] of
isomorphism classes of B∆,p-groups, ordered by inclusion. Then the assignment

Θ : F 7→ {H ∈ [B∆,p-gr] | e∆,p
H ⊆ F}

defines an isomorphism of posets Θ : S ∼−→ T .
Its inverse is given by

Ψ : A 7→
∑
H∈A

e∆,p
H .
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We now describe the composition factors of the Burnside functor KB as a p-bifree biset
functor. For each B∆,p-group G, the subfunctor e∆,p

G is crucial, and its maximal proper
subfunctor determines a unique simple quotient. We refer to Section 5 of [Bc10] for the
proofs of the following results up to the end of the section.

4.8 Proposition (i) Let G be a B∆,p-group. Then the functor e∆,p
G has a unique maximal

subfunctor
j∆,pG =

∑
H∈[B∆,p-gr]
H�G, H 6∼=G

e∆,p
H ,

and the quotient e∆,p
G /j∆,pG is isomorphic to the simple functor S∆,p

G,K.

(ii) Let F ⊂ F ′ be subfunctors of KB such that F ′/F is simple. Then there exists a
unique G ∈ [B∆,p-gr] such that e∆,p

G ⊆ F ′ and e∆,p
G * F . In particular, one has

e∆,p
G + F = F ′, e∆,p

G ∩ F = j∆,pG , and F ′/F ∼= S∆,p
G,K.

4.9 Corollary The composition factors of KB as a p-bifree biset functor are precisely
the simple functors S∆,p

G,K, where G runs over the set [B∆,p-gr].

To compute the evaluation of the simple functor S∆
G,K at a finite group H, we first describe

the structure of e∆,p
G (H) in terms of the subgroup lattice of H.

4.10 Proposition Let G and H be finite groups. Then the evaluation e∆,p
G (H) is the

subspace of KB(H) spanned by the idempotents eHK , where K runs over a set of represen-
tatives of conjugacy classes of subgroups of H satisfying K � δp(G).

This description allows us to compute the dimension of S∆,p
G,K(H) explicitly in terms of the

minimal groups δp(K) associated with the subgroups K 6 H.

4.11 Theorem Let G be a B∆,p-group and H a finite group. Then the K-dimension
of S∆,p

G,K(H) is equal to the number of conjugacy classes of subgroups K 6 H such that
δp(K) ∼= G.

5 The functor KB∆,p

In this section, we study the representable functor KB∆,p(−, 1), which assigns to each
finite group G the K-vector space KB∆,p(G, 1). This functor is a p-bifree analogue of the
classical representable biset functor KB(−, 1), and its structure can be analyzed using the
same tools developed for the Burnside functor. In particular, we show that its composition
factors are parametrized by B-groups of p′-order, and we describe the corresponding simple
functors explicitly. We introduce this functor as a Grothendieck group as follows.
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Let R be a commutative ring with identity and let K be a field of characteristic zero.
Let G be a finite group. A left G-set is said to be left p-free, if it is a disjoint union of
transitive G-sets with p′-stabilizers. Let Gset

∆,p denote the category of left p-free G-sets.
One can similarly define the category set∆,pG of right p-free G-sets. Identifying a G-set X

with a (G, 1)-biset induces an isomorphism Gset
∆,p ∼= Gset

∆,p
1 .

Let B∆,p(G) denote the Grothendieck group of the category Gset
∆,p with respect to

disjoint unions. Note that

B∆,p(G) =
⊕

H∈[sG]p′

Z[G/H] ,

where [sG]p′ denotes a set of representatives of the G-conjugacy classes of p′-subgroups
of G. The direct product of G-sets induces a commutative ring structure on B∆,p(G).
In fact, the direct product of two transitive left p-free G-sets is a disjoint union of such
transitive bisets; see, for instance, [Bc00, Equation 3.1.2].

5.1 Remark Let H and K be subgroups of G. Then

|(G/K)H | = |{x ∈ G/K |Hx ⊆ K}| .

In particular, if K is a p′-group, i.e., if [G/K] ∈ B∆,p(G) and if H is not a p′-subgroup,
then |(G/K)H | = 0. This means that the mark morphism

φ : B(G)→
∏

H∈[sG]

Z, [X] 7→ (|XH |)H∈[sG]

restricts to a map

φ : B∆,p(G)→
∏

H∈[sG]p′

Z, [X] 7→ (|XH |)H∈[sG]p′

which we denote again by φ. It follows that the primitive idempotents of KB∆,p(G) are
precisely the idempotents eGH ∈ KB(G) where H is a p′-subgroup of G. Setting

eGp′ :=
∑

H∈[sG]p′

eGH

we have

KB∆,p(G) = eGp′KB(G) = KB(G)eGp′ = eGp′KB(G)eGp′ .

5.2 Remark Note that the commutative ring B∆,p(G) does not have an identity element
unless G is a p′-subgroup.

We consider the functor RB∆,p : RC∆,p → RMod defined as

11



• G 7→ RB∆,p(G).

• X ∈ RB∆,p(H,G) 7→
(
RB(X) : RB∆,p(G)→ RB∆,p(H), U 7→ X ·G U

)
.

Note that RB∆,p is isomorphic to the representable functor RB∆,p(−, 1) at 1. Also, it
is a p-bifree subfunctor of RB.

By Theorem 4.7, the poset of the subfunctors of KB∆,p is isomorphic to the poset of
closed subsets of

Θ(KB∆,p) = {H ∈ [B∆-gr] | e∆,p
H ⊆ KB∆,p} .

This observation allows us to identify the minimal groups contributing to the functor
KB∆. The next result shows that they are exactly the B-groups of p′-order, in the sense
of Boucs theory.

5.3 Lemma Let H be a B∆,p-group. Then e∆,p
H ⊆ KB∆,p if and only if H is a p′-group.

Proof Suppose e∆,p
H ⊆ KB∆,p. Then eHH ∈ e∆,p

H (H) ⊆ KB∆,p(H). By Remark 5.1, H is

a p′-group. Conversely, if H is a p′-group, then eHH ∈ KB∆,p(H) and hence e∆,p
H ⊆ KB∆,p.

As a consequence, we obtain the following classification of composition factors.

5.4 Corollary The composition factors of the p-bifree biset functor KB∆,p are the func-
tors S∆,p

G,K where G is a B-group of p′-order.

6 The simple functor S∆,p
1,K

We now turn to the simple functor S∆,p
1,K , corresponding to the trivial group and the

trivial module. This functor plays a foundational role in the theory, as it appears as
a composition factor in both the Burnside and character functors. In this section, we
compute the dimension of S∆,p

1,K (G) for an arbitrary finite group G, and show that it is
governed by the number of conjugacy classes of cyclic p′-subgroups of G.

Let R be a commutative ring with identity and let K be a field of characteristic zero.
Let (G,V ) be a pair of a finite group G and a simple ROut(G)-module V . We first describe
the simple functor S∆,p

G,V in more detail.

Let EG := RB∆,p(G,G) denote the endomorphism algebra of G in the category RC∆,p.
Then E∆,p(G) = EG/IG ∼= ROut(G). We consider V as a simple EG-module and define
the functor LG,V by

LG,V (H) = RB∆,p(H,G)⊗EG V .

12



Then by [Bc96], LG,V has a unique maximal subfunctor JG,V whose evaluation at a finite
group H is given by

JG,V (H) =
{∑

i

xi ⊗ vi ∈ LG,V (H) | ∀y ∈ RB∆,p(G,H) :
∑
i

(y ·H xi)(vi) = 0
}
.

The simple functor S∆,p
G,V is defined as the quotient LG,V /JG,V .

We compute the K-dimension of S∆,p
1,K (G) inspired by the proof of [Bc96, Proposition 8].

Note that the functor L1,K is isomorphic to the functor KB∆,p. Moreover for any finite
group G, identifying L1,K(G) with KB∆,p(G) one has

J1,K(G) = {X ∈ KB∆,p(G) | ∀Y ∈ KB∆,p(G) : |G \ (Y ×X)| = 0} .

This implies that the dimension of S∆,p
1,K (G) is equal to the rank of the bilinear form

〈−,−〉 : KB∆,p(G)×KB∆,p(G)→ K, (X,Y ) 7→ |G \ (Y ×X)| .

The set of primitive idempotents {eGH}H∈[sG]p′
form an orthogonal basis with respect to

this bilinear form. Moreover, for H ∈ [sG]p′ , one has

〈eGH , eGH〉 = |G \ eGH | =
1

|NG(H)|
∑
K6H

|K|µ(K,H)

=
1

|NG(H)|
∑
x∈H

∑
〈x〉6K6H

µ(K,H) =
φ1(H)

|NG(H)|

where φ1(H) is the number of elements x ∈ H such that 〈x〉 = H. This is non-zero if and
only if H is cyclic. This proves the following.

6.1 Theorem Let G be a finite group. The K-dimension of S∆,p
1,K (G) is equal to the

number of conjugacy classes of cyclic p′-subgroups of G.

6.2 Remark Let G be a finite group. Then δp(G) = 1 if and only if G is a cyclic p′-group.
Thus, Theorem 6.1 is a special case of Theorem 4.11.

7 The functor of complex character ring

Let C be an algebraically closed field of characteristic zero. We denote by RC(G) the
Grothendieck group of finite dimensional CG-modules with respect to short exact se-
quences. For a commutative ring R with unity, we set RRC(G) := R⊗Z RC(G).

We identify CRC(G) with the C-vector space of class functions from G to C. If X is
a p-bifree (H,G)-biset, then tensoring with CX over CG induces a well-defined C-linear
map

CRC(X) : CRC(G)→ CRC(H).

This endows CRC(−) with a structure of p-bifree biset functor over C.
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7.1 Remark Given a pair (G,V ) where G is a finite group and V is a simple COut(G)-
module, let SG,V denote the associated simple biset functor over C. By [Bc10, Corol-
lary 7.3.5], there is a canonical decomposition of biset functors

CRC =
⊕
(m,ξ)

SZ/mZ,Cξ ,

where (m, ξ) runs through the set of pairs consisting of a positive integer m and a primitive
character ξ : (Z/mZ)× → C×. For each finite group G, we therefore view SZ/mZ,Cξ(G) as
the corresponding direct summand (hence a subspace) of CRC(G) afforded by the above
canonical decomposition. Restricting along the inclusion of the p-bifree biset category
yields the same equality of p-bifree biset functors. Note that SZ/mZ,Cξ is not necessarily
simple as a p-bifree biset functor.

Our aim in this section is to describe the composition factors of CRC(−) as a p-bifree
biset functor.

For a cyclic group Z/mZ and a primitive character ξ : (Z/mZ)× → C×, we denote by
ξ̃ the class function from Z/mZ to C obtained by extending ξ by 0, i.e., for x ∈ Z/mZ,

ξ̃(x) =

{
ξ(x), if x ∈ (Z/mZ)×

0, otherwise .

7.2 Proposition Let G be a finite group. Let also m be a positive integer and ξ a prim-
itive character of (Z/mZ)×. Then for any χ ∈ SZ/mZ,Cξ(G), there exists χ′ ∈ SZ/mZ,Cξ(G)

and α ∈ IG such that

χ = χ′ + α · χ .

Proof We divide the proof into several steps.

Step 1: By Proposition 1.5(iv) of Chapter 3 of [BHabil], for any χ ∈ CRC(G), we
have

χ =
1

|G|
∑

L6K6G
K cyclic

|L|µ(L,K)IndGLResGLχ .

It follows that if G is not a cyclic group, the claim holds by putting χ′ = 0 and setting

α =
1

|G|
∑

L6K6G
K cyclic

|L|µ(L,K)
[G×G

∆(L)

]
∈ IG.

Note that this also shows that SZ/mZ,Cξ(G) = {0} unless G is cyclic.

Step 2: Now suppose G = Z/nZ is a cyclic group. If n is not a multiple of m, then
by [Bc10, Corollary 7.4.3] SZ/mZ,Cξ(Z/nZ) = {0} and hence there is nothing to prove.
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Therefore, assume that n is a multiple of m and let χ ∈ SZ/mZ,Cξ(Z/nZ). Then we can
write

χ = ẽGGχ+ (1− ẽGG)χ.

Since 1− ẽGG ∈ IG, it is sufficient to consider ẽGGχ. But the functor SZ/mZ,Cξ is generated

by ξ̃, and suppose that

ẽGG ·G
[
G× Z/mZ

L

]
·Z/mZ ξ̃

is non-zero for some L 6 G × Z/mZ. Since Z/mZ is a minimal group for the func-
tor SZ/mZ,Cξ , it follows that p2(L) = Z/mZ and k2(L) = {1}. Moreover, by [Bc10,
Corollary 2.5.12 and Theorem 5.2.4], we have p1(L) = G. It follows that the space
ẽGGSZ/mZ,Cξ(G) is one dimensional generated by the inflation ẽGGInfGZ/mZξ̃. Hence we may

put ẽGGχ = ẽGGInfGZ/mZξ̃.
Let N 6 G be such that G/N ∼= Z/mZ. Write N = Np × Np′ . Assume first that

Np′ 6= 1. Then, by [Bc10, Corollary 2.5.12 and Theorem 5.2.4], one has

(ẽGGInfGG/Np′
DefGG/Np′

)ẽGGInfGG/N ξ̃ = ẽGGInfGG/Np′
(DefGG/Np′

ẽGGInfGG/Np′
)Inf

G/Np′

G/N ξ̃

= mG,Np′ ẽ
G
GInfGG/Np′

ẽ
G/Np′

G/Np′
Inf

G/Np′

G/N ξ̃

= mG,Np′ ẽ
G
G

˜
(InfGG/Np′

e
G/Np′

G/Np′
)InfGG/Np′

Inf
G/Np′

G/N ξ̃

= mG,Np′ ẽ
G
GInfGG/N ξ̃ .

Since G is cyclic, mG,Np′ 6= 0 by [Bc10, Proposition 5.6.1]. Thus, the condition is

satisfied by putting χ′ = 0 and α = 1
mG,N

ẽGGInfGG/Np′
DefGG/Np′

. This also shows that

SZ/mZ,Cξ(G) = 0.

Step 3: Now suppose thatNp′ = 1, soN is a cyclic p-group. Note that the restriction of
ẽGGInfGG/N ξ̃ to a proper subgroup is equal to zero. Hence if G is a p-group, then ẽGGInfGG/N ξ̃ ∈
SZ/mZ,Cξ(G). Again, the condition is satisfied in this case too.

Suppose G is not a p-group, then

ẽGGInfGG/N ξ̃ =
1

|G|
∑
K6G

|K|µ(K,G)IndGKResGKInfGG/N ξ̃

=
1

|G|
∑
K6G

|K|µ(K,G)IndGKInfKK/(K∩N)Iso(f−1)Res
G/N
KN/N ξ̃

=
1

|G|
∑

K6G:KN=G

|K|µ(K,G)IndGKInfKK/(K∩N)Iso(f−1) ξ̃ ,
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where f : K/K ∩ N → KN/N is the canonical isomorphism. Note that since N is a
p-subgroup of G, the condition KN = G holds if and only if Gp′ ⊆ K and KpN = Gp.
There are two cases:

(i) If N < Gp, then NKp = Gp holds if and only if Kp = Gp, because Gp is a cyclic
p-group, and in this case we get K = G.

(ii) If N = Gp, then Kp can be any subgroup of Gp, so K is any subgroup with Gp′ ⊆ K.

In Case (i), we get

ẽGGInfGG/N ξ̃ =
1

|G|
∑

K6G:KN=G

|K|µ(K,G)IndGKInfKK/(K∩N)Iso(f−1) ξ̃

= InfGG/N ξ̃ .

On the other hand, in Case (ii), we obtain

ẽGGInfGG/N ξ̃ =
1

|G|
∑

Gp′6K6G

|K|µ(K,G)IndGKInfKK/(K∩N)Iso(f−1) ξ̃ .

Here we have µ(K,G) = µ(|G : K|), the number theoretic Möbius function. We have
µ(|G : K|) = 1 if G = K, it is −1 if |G : K| = p and 0 otherwise. Hence the above equality
becomes

ẽGGInfGG/N ξ̃ = InfGG/N Iso ξ̃ − 1

p
IndInfGK/(K∩N)Iso(f−1) ξ̃ ,

where K is the unique subgroup of index p of G. Now for any non-trivial p′-subgroup M
of G, we have

DefGG/M InfGG/N ξ̃ = Inf
G/M
G/NMDef

G/N
G/NM ξ̃ = 0

since |G : NM | < |G : N | = m and since G/N ∼= Z/mZ is a minimal group for the functor
SZ/mZ,Cξ . Hence ẽGGInfGG/N ξ̃ ∈ SZ/mZ,Cξ(G) in Case (i).

For Case (ii), we need to evaluate

DefGG/M

(
InfGG/N Iso ξ − 1

p
IndInfGK/(K∩N)Iso(f−1)ξ

)
.

The first term is zero, by the above calculations. We also evaluate the second term:

DefGG/M IndInfGK/(K∩N)Iso(f−1) ξ̃ = IndInf
G/M
K/(M(K∩N))Def

K/(K∩N)
K/(M(K∩N))Iso(f−1) ξ̃ = 0

since |K : M(K ∩N)| < |K : K ∩N | = m. Hence ẽGGInfGG/N ξ̃ ∈ SZ/mZ,Cξ(G) in Case (ii)

too. The result follows.
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7.3 Notation Let m ∈ N and let ξ be a primitive character of (Z/mZ)×. Let n ∈ N0 and

let G = Z/mpnZ be the cyclic group of order m · pn. We set ξm,n,p := InfG
×

(Z/mZ)×ξ and

ξ̃m,n,p := ẽGGInfGZ/mZξ̃.

Note that for x ∈ G, one has

ξ̃m,n,p(x) =

{
InfGZ/mZξ̃(x), if 〈x〉 = G ,

0, otherwise.

7.4 Definition Let k ∈ N. We call an irreducible character χ of (Z/kZ)× p-primitive, if
χ is inflated from a primitive character of (Z/mZ)× for some m | k such that k/m is a

power of p, that is, χ = Inf
(Z/kZ)×

(Z/mZ)×ξ for some primitive character ξ.

Note that the character ξm,n,p above is p-primitive.

7.5 Corollary Let G be a finite group, m a positive integer, and ξ a primitive character
of (Z/mZ)×.

(a) SZ/mZ,Cξ(G) = {0} unless G is a cyclic group of order mpn for some integer n > 0.

(b) If G is a cyclic group of order mpn for some n > 0, then SZ/mZ,Cξ(G) is one-

dimensional generated by ξ̃m,n,p.

Proof Part (a) follows from Steps 1 and 2 in the proof of Proposition 7.2, while Part (b)
follows from Step 3.

Now we show that the functor SZ/mZ,Cξ is semisimple as a p-bifree biset functor.

7.6 Theorem Let m be a positive integer and let ξ be a primitive character of (Z/mZ)×.
Then

SZ/mZ,Cξ
∼=
⊕
n∈N0

S∆,p
Z/mpnZ,Cξm,n,p

as p-bifree biset functors.

Proof As before we regard S := SZ/mZ,Cξ as a subfunctor of CRC. By Proposition 7.2,
Corollary 7.5 and Theorem 10.2, the composition factors of S are exactly the functors
S∆,p
Z/mpnZ,Cξm,n,p

each with multiplicity one. We will show that each of these functors

appears as a subfunctor. Let F be a p-bifree biset subfunctor of S and let G be a minimal
group for F . Since F (K) = 0 for any group K with |K| < |G|, we have 0 6= F (G) ⊆ S(G).
By Corollary 7.5, it follows that G is a cyclic group of order m·pn for some natural number
n, and that F (G) is one-dimensional generated by ξ̃m,n,p = ẽGGInfGZ/mZξ. Conversely, if G
is a cyclic group of order m ·pn, then S(G) 6= 0 and the subfunctor generated by S(G) has
a minimal group G.
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For any natural number n > 0, let Gn = Z/mpnZ be a cyclic group of order m ·pn and
let Fn be the subfunctor of S generated by ξ̃m,n,p. Then by the discussions above Fn has
a minimal group Gn. We claim that Fn is a simple p-bifree biset functor. It is sufficient
to show that Fn+k 6⊆ Fn for any k > 1. Indeed, if Fn has a non-zero subfunctor M , then
the minimal group of M is Gn+k for some k and by definition Fn+k ⊆M .

Let k > 1. Since |Gn+k|/|Gn| is a p-power, the space CB∆,p(Gn+k, Gn) ◦ Fn(Gn) is

one-dimensional, generated by Ind
Gn+k

Gn
ξ̃m,n,p. In particular, ẽ

Gn+k

Gn+k
Fn(Gn+k) = 0. But,

ẽ
Gn+k

Gn+k
Fn+k(Gn+k) = Fn+k(Gn+k) 6= 0. Hence, Fn+k 6⊆ Fn, as required. This shows that

Fn is simple. Moreover, for any x ∈ (Z/mpn)×, we have x · ξ̃m,n,p = ξm,n,p(x)ξ̃m,n,p which

implies Fn(Gn) ∼= Cξm,n,p . This shows that Fn ∼= S∆,p
Gn,Cξm,n,p

and theorem is proved.

These calculations show that CRC decomposes into a direct sum of simple p-bifree
biset functors indexed by pairs (m, ξ), where m is a positive integer and ξ is a p-primitive
character of (Z/mZ)×.

7.7 Corollary One has

CRC ∼=
⊕
(m,ξ)

S∆,p
Z/mZ,Cξ

where (m, ξ) runs through the set of pairs consisting of a positive integer m and a p-
primitive character ξ of (Z/mZ)×.

Proof By Remark 7.1 and Theorem 7.6, we have

CRC ∼=
⊕
(k,χ)

⊕
n∈N0

S∆,p
Z/kpnZ,Cχk,n,p

where (k, χ) runs through the set of pairs consisting of a positive integer k and a primitive
character χ of (Z/kZ)×. We may write the above sum as

CRC ∼=
⊕
m∈N

⊕
(l,χ)

S∆,p
Z/mZ,Cχ

m/pl,l,p

where (l, χ) runs through the set of pairs of a non-negative integer l with pl |m and a
primitive character χ of (Z/(m/pl)Z)×. By the definition of χm,n,p, it follows that as pl

runs over p-power divisors of m, the characters χm/pl,l,p runs over all p-primitive characters
of (Z/mZ)×. The result follows.

We now present an alternative proof of Theorem 7.6 and Corollary 7.7. This proof was
suggested by an anonymous referee, whom we thank for this valuable contribution.

7.8 Theorem The p-bifree biset functor CRC is semisimple.
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Proof (Referee) Let G and H be finite groups and let U be a p-bifree (H,G)-biset. For
a class map ϕ : G → C, we denote by Uϕ the map CRC(U)(ϕ) : H → C. By [Bc10,
Lemma 7.1.3], this map is given by

∀h ∈ H, (Uϕ) (h) =
1

|G|
∑
u∈U
g∈G
hu=ug

ϕ(g) .

Denote by 〈−,−〉G the standard inner prouct on CRC(G) and note that for any θ ∈
CRC(H), one has

〈Uϕ, θ〉H = 〈ϕ,Uopθ〉G ,

where Uop denotes the opposite biset. It follows that if F is a subfunctor of CRC, then
the map

G 7→ F⊥(G) := {ψ ∈ CRC(G) | ∀ϕ ∈ F (G), 〈ψ,ϕ〉G = 0}

defines a subfunctor F⊥ of CRC. Moreover, for any finite group G, since the product
〈−,−〉G is positive, we have F (G) ∩ F⊥(G) = {0}. It follows that F (G) ⊕ F⊥(G) =
CRC(G), since the product 〈−,−〉G is non-degenerate. In other words F ⊕ F⊥ = CRC.

It follows more generally that if F ′ 6 F are subfunctors of CRC, then F ′ 6 F 6 F ⊕F ′
so F = F ′ ⊕ (F ∩ F ′⊥), and F ∩ F ′⊥ is a subfunctor of F isomorphic to F/F ′. So any
subquotient functor of CRC is in fact isomorphic to a subfunctor of CRC.

Now let Σ denote the sum of all simple subfunctors of CRC. Then Σ ⊕ Σ⊥ = CRC.
Suppose that Σ⊥ 6= {0} and let T = F/F ′ be a composition factor of Σ⊥, where F ′ < F
are subfunctors of Σ⊥. Then there is a simple subfunctor T1 of F , isomorphic to T , such
that F = F ′ ⊕ T1. But then T1 is a simple subfunctor of CRC, so T1 6 Σ. Thus

{0} 6= T1 6 Σ ∩ F 6 Σ ∩ Σ⊥ = {0} .

This contradiction shows that Σ = CRC, i.e., CRC is semisimple.

An alternative proof of Theorem 7.6 (Referee): Let m be a positive integer and let
ξ : (Z/mZ)× → C× be a primitive character. Then the simple biset functor SZ/mZ,Cξ is
a direct summand of CRC, and by Theorem 7.8, CRC is semisimple as a p-bifree biset
functor. It follows that SZ/mZ,Cξ is also semisimple p-bifree biset functor.

Let S∆
H,V be a simple direct summand of SZ/mZ,Cξ . Let f be a non-zero element

of S∆
H,V (H) and x ∈ H such that f(x) 6= 0. Since H is a minimal group for S∆

H,V , it
follows that 〈x〉 = H, so H is cyclic. Set n = |H|. Now V is a simple module for
Out(H) ∼= (Z/nZ)×, so V = Cλ for some character λ : (Z/mZ)× → C×. The action of
α ∈ (Z/nZ)× on V = Cλ is given by α · 1Cλ = λ(α)1Cλ . It follows that α · f = λ(α)f , and
we can assume that f = λ̃, where λ̃ : Z/nZ → C is equal to λ on (Z/nZ)× and to 0 on
Z/nZ \ (Z/nZ)×.
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But λ̃ ∈ S∆,p
Z/nZ,Cλ

(Z/nZ) ⊆ SZ/mZ,Cξ(Z/nZ). So, in particular, SZ/mZ,Cξ(Z/nZ) 6= 0

and hence m |n by [Bc10, Corollary 7.4.3]. Moreover, since SZ/mZ,Cξ is simple, the biset

subfunctor 〈λ̃〉 of CRC generated by λ̃ is equal to SZ/mZ,Cξ . This in turn is generated by

the map ξ̃ : Z/mZ→ C. In particular,

CB(Z/mZ,Z/nZ)(λ̃) = 〈λ̃〉(Z/mZ) = SZ/mZ,Cξ(Z/mZ) = Cξ̃ .

Equivalently, there exist a subgroup L 6 Z/mZ×Z/nZ and a non-zero scalar a ∈ C such
that aξ̃ = ((Z/mZ× Z/nZ) /L) (λ̃). Setting A := p1(L), B := k1(L), C := p2(L) and
D := k2(L), we have

aξ̃ = Ind
Z/mZ
A InfAA/BIso(ϕ)DefCC/DRes

Z/nZ
C (λ̃) ,

where ϕ : C/D → A/B is the canonical group isomorphism. Since this is non-zero and
Z/mZ is a minimal group for SZ/mZ,Cξ , we have A = Z/mZ and B = 1. Moreover, since

Z/nZ is a minimal group for S∆,p
Z/nZ,Cλ

, any proper restriction of λ̃ is equal to 0. It follows

that C = Z/nZ and C/D ∼= A/B ∼= Z/mZ, so D is the unique subgroup of Z/nZ of index
n/m. Finally,

aξ̃ = Iso(ϕ)Def
Z/nZ
Z/mZ(λ̃) ,

where ϕ is an automorphism of Z/mZ. Equivalently, there exists a non-zero scalar c such
that

cξ̃ = Def
Z/nZ
Z/mZ(λ̃) . (2)

However, again, since Z/nZ is a minimal group for S∆,p
Z/nZ,Cλ

, any proper deflation of λ̃

with p′-kernel is equal to zero. It follows that n/m is a power of p. So, n = mpd for some
d ∈ N0.

Now let π : Z/nZ → Z/mZ be the projection map and let α ∈ Aut(Z/mZ) and
β ∈ Aut(Z/nZ) such that α ◦ π = π ◦ β. Identifying Aut(Z/nZ) and Aut(Z/mZ) with
(Z/nZ)× and (Z/mZ)×, respectively, we get that

cξ(α)ξ̃ = Iso(α)(cξ̃)

= Iso(α) ◦Def
Z/nZ
Z/mZ(λ̃)

= Def
Z/nZ
Z/mZ ◦ Iso(β)(λ̃)

= Def
Z/nZ
Z/mZ

(
λ(β)λ̃

)
= λ(β)cξ̃ ,

where the second equality follows from Equation (2). It follows that ξ(α) = λ(β). In
particular, λ(β) = 1, if α is the identity, i.e., if β is in the kernel of the projection map
(π×)nm : (Z/nZ)× → (Z/mZ)×. Moreover, λ = ξ ◦ (π×)nm.
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We finally get that any simple p-bifree biset subfunctor of SZ/mZ,Cξ is isomorphic to

S∆,p
Z/mpdZ,Cξm,d,p

, for some d ∈ N0, where ξm,d,p = ξ ◦ (π×)mp
d

n .

Conversely, given m and d, set ξm,d,p = ξ ◦ (π×)mp
d

n . Then we have

ξ̃m,d,p = ẽ
Z/mpdZ
Z/mpdZInf

Z/mpdZ
Z/mZ ξ̃ ,

so ξ̃m,d,p ∈ SZ/mZ,Cξ(Z/mp
dZ). Since the p-bifree biset functor generated by ξ̃m,d,p is equal

to S∆,p
Z/mpdZ,Cξm,d,p

, it follows that S∆,p
Z/mpdZ,Cξm,d,p

is a subfunctor of SZ/mZ,Cξ for any d ∈ N0.

Since also ξ̃m,d,p is uniquely defined by m, ξ, and d, there exists a unique subfunctor of

SZ/mZ,Cξ isomorphic to S∆,p
Z/mpdZ,Cξm,d,p

, for each d ∈ N0. This proves Theorem 7.6.

8 The functor of Brauer characters

Let k be an algebraically closed field of characteristic p. We denote by Rk(G) the
Grothendieck group of finite dimensional kG-modules with respect to short exact se-
quences. For a commutative ring R with unity, we set RRk(G) := R⊗Z Rk(G).

Let C be an algebraically closed field of characteristic zero. We identify CRk(G) with
the C-vector space of class functions from Gp′ to C. If H is another finite group and X
is a p-bifree (H,G)-biset, then kX is projective, and therefore flat, as a right kG-module.
Consequently, tensoring with kX over kG induces a well-defined group homomorphism

Rk(X) := kX ⊗kG − : Rk(G)→ Rk(H),

and a C-linear map

CRk(X) : CRk(G)→ CRk(H).

This endows CRk(−) with a structure of p-bifree biset functor over C.

8.1 Remark Note that the restrictions of the functors CRk and CRC to the full subcat-
egory of p′-groups are equal via the identifications above. Also, for a positive p′-integer m
and a primitive character ξ : Z/mZ→ C×, the restriction of the simple functor SZ/mZ,Cξ
is simple. Therefore, one has equalities

CRk = CRC =
⊕
(m,ξ)

SZ/mZ,Cξ

of p-bifree biset functors on the full subcategory of p′-groups, where (m, ξ) runs through the
set of pairs consisting of a positive p′-integer m and a primitive character ξ : (Z/mZ)× →
C×.
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In this section, we examine the Brauer character ring CRk as a p-bifree biset functor.
We classify its composition factors explicitly and describe its relationship with the complex
character ring functor CRC. The main result is a short exact sequence of p-bifree biset
functors, which reveals how the modular and ordinary character theories fit together within
this categorical framework.

8.2 Remark Recall that one has isomorphisms CRk(−) ∼= CProj(−) ∼= S1,1,C of simple
diagonal p-permutation functors over C, see [BY20, Theorem 5.18] and [BY25, Section 6].

We start by showing that the functor CRk is semisimple. The proof presented is also
suggested by the anonymous referee, simplifying our previous more involved proof.

8.3 Theorem CRk is a semisimple p-bifree biset functor.

Proof (Referee) Let G be a finite group. Let resG : CRC(G) → CRk(G) denote the
restriction map sending f ∈ CRC(G) to its restriction to Gp′ . Let proG : CRk(G) →
CRC(G) denote the extension map, sending f ∈ CRk(G) to the map equal to f on Gp′

and to 0 on G \Gp′ . Then the composition resG ◦ proG is the identity map on CRk(G).
Let H also be a finite group and U a p-bifree (H,G)-biset. Note that if h ∈ H, g ∈ G

and u ∈ U are such that hu = ug, then h ∈ Hp′ if and only if g ∈ Gp′ . Indeed, if n is the
order of h, then hnu = u = ugn. So, gn is in the right stabilizer of u which is a p′-group.
If h ∈ Hp′ , then n is coprime to p and so g ∈ Gp′ . A similar argument shows that if
g ∈ Gp′ , then h ∈ Hp′ . It follows from this observation and from [Bc10, Lemma 7.1.3] that
if f ∈ CRk(G), then Uf ∈ CRC(H). Moreover, proH(Uf) = UproG(f). This implies that
the maps proG form a morphism of p-bifree biset functors pro : CRk → CRC. Similarly, the
maps resG form a morphism of p-bifree biset functors res : CRC → CRk. The composition
res ◦ pro is equal to the identity of CRk. The result follows since the functor CRC is
semisimple by Theorem 7.8.

8.4 Corollary One has

CRk ∼=
⊕
(m,ξ)

S∆,p
Z/mZ,Cξ

where (m, ξ) runs through a set of pairs consisting of a positive p′-number m and a
primitive character ξ of (Z/mZ)×.

Proof (Referee) By Corollary 7.7 and by the proof of Theorem 8.3, composition factors
of CRk are of the form S∆,p

Z/mZ,ξm,n,p where m is a positive integer and ξ is a primitive

character of (Z/mZ)×. Such a functor is a direct summand of CRk if and only if the map
ξ̃m,n,p vanishes on p-singular elements, i.e., if and only if m is coprime to p and n = 0.
The result follows.

We now present an alternative proof of Corollary 8.4. We start with the description
of the restriction kernels.
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8.5 Proposition Let G be a finite group.

(i) One has CRk(G) = 0 unless G is a cyclic p′-group.

(ii) Let G = Z/mZ be a cyclic p′-group. Then the CAut(G)-module CRk(G) is equal
to the direct sum of all primitive CAut(G)-modules.

Proof (i) Let χ ∈ CRk(G) be a non-zero element and let g ∈ G with χ(g) 6= 0. Then g
is a p′-element and ResG〈g〉χ 6= 0. This shows that χ 6∈ CRk(G) and therefore, CRk(G) = 0

if G is not a cyclic p′-group.
(ii) Let G = Z/mZ be a cyclic p′-group. Since G is a p′-group, we may identify CRk(G)

with CRC(G), and by Lemma 10.1, CRk(G) with CRC(G). By Remark 7.1, one has

CRk(G) =

⊕
ξ

SG,Cξ(G)

⊕
 ⊕

(H,η):|H|<|G|

SH,Cη(G)


where ξ runs over primitive characters ξ : (Z/mZ)× → C× and where (H, η) runs
over a pair of cyclic p′-group H = Z/nZ with |H| < |G| and a primitive character
η : (Z/nZ)× → C×. It is easy to see that the space ⊕ξSG,Cξ(G) ∼= ⊕ξCξ is con-
tained in CRk(G). Conversely, let x ∈ CRk(G) be a non-zero element and assume that
x /∈ ⊕ξSG,Cξ(G). Let H be a group of minimal order with the property that for some η,
the (H, η)-coordinate xH,η ∈ SH,Cη(G) is not zero. Then |H| < |G|, and xH,η ∈ CRk(G).
Since SH,Kη is simple, the subfunctor of SH,η generated by xH,η must be equal to SH,η. It
follows that Cη ∼= SH,Cη(H) is equal to CB∆,p(H,G) ◦ xH,η. In particular, xH,η is not in
the restriction kernel CRk(G), a contradiction. This completes the proof.

An alternative proof of Corollary 8.4: By Theorem 8.3 and Proposition 10.4, for any
finite group G and any χ ∈ CRk(G), there exist χ′ ∈ CRk(G) and α ∈ IG satisfying the
equality

χ = χ′ + α · χ .

It follows from Theorem 10.2 that the multiplicity of a simple p-bifree biset functor S∆,p
H,V

in CRk as a composition factor is equal to that of the CAut(H)-module V in CRk(H).
By Proposition 8.5, the restriction kernel is zero unless H is a cyclic p′-group. Hence

the multiplicity of S∆,p
H,V in CRk is equal to 0 if H is not a cyclic p′-group. Furthermore, if

H is a cyclic p′-group, by Proposition 8.5(ii), the multiplicity of S∆,p
H,V in CRk is non-zero

if and only if V is primitive, in which case it is equal to 1.

8.6 Remark By Corollaries 8.4 and 7.7, we obtain a short exact sequence

0 −→
⊕
(m,ξ)

S∆,p
Z/mZ,Cξ

−→ CRC −→ CRk −→ 0

of p-bifree biset functors, where (m, ξ) runs through the set of pairs consisting of a positive
integer m divisible by p and a p-primitive character ξ of (Z/mZ)×.
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9 Simple biset functors associated with B-groups

In this section, we analyze how certain classical simple biset functors behave under restric-
tion to the p-bifree biset category. Our focus is on the simple functors SK,C where K is
a B-group. As special cases we consider the functors SCp×Cp,C and SCq×Cq ,C, for a prime
number q with q 6= p, whose evaluations are closely related to the structure of the Dade
group (see [Bc10, Chapters 11–12]). It turns out that both functors decompose as direct
sums of simple p-bifree biset functors indexed by specific families of p-groups.

9.1 Remark Let K be a B-group. Let eK and jK be biset subfunctors of the Burnside
ring functor introduced in [Bc10, Section 5], similar to the functors e∆,p

K and j∆,p
K in

Section 4. By the proof of [Bc10, Theorem 5.5.4], the functor SK,C is isomorphic as biset
functors to the quotient eK/jK . We identify SK,C as a subquotient of the Burnside functor
via that isomorphism.

The following theorem, suggested by an anonymous referee, simultaneously generalizes
the two special cases presented later in this section (see Parts (b) and (c) of Corollary 9.3
below). Our original approach to these cases, consistent with the previous sections, uses
restriction kernels. We outline this approach at the end of the section.

9.2 Theorem (Referee) Let K be a B-group. Then the p-bifree biset functor SK,C is
semisimple. More precisely,

SK,C ∼=
⊕
H

S∆,p
H,C

where H runs over a set of isomorphism classes of B∆,p-groups with the property β(H) ∼=
K.

Proof Let S∆,p
H,V be a simple subquotient of SK,C. Then S∆,p

H,V is a simple subquotient of

CB as a p-bifree biset functor, so by Corollary 4.9, H is a B∆,p-group and V is the trivial
module C.

Now SK,C ∼= eK/jK , and for a finite group G, the space eK(G) has a basis consisting of
the idempotents eGX , for X 6 G such that X � K, i.e., β(X)� K, since K is a B-group.
The space jK(G) has a basis consisting of the idempotents eGX such that β(X) � K but
β(X) 6∼= K.

Since S∆,p
H,V is a subquotient of SK,C, we have that ẽHH S

∆,p
H,C(H) ∼= C is a subquotient

of ẽHHSK,C(H), hence ẽHHSK,C(H) 6= 0. So there exists a subgroup X of H with ẽHH e
H
X =

eHX ∈ eK(H) − jK(H). This implies β(X) ∼= K. Since ẽHHe
H
X 6= 0, we have X = H, so

β(H) ∼= K.
Now e∆,p

H 6 eK , and e∆,p
H � jK . Let F be a subfunctor of e∆,p

H , not contained in jK .

Then there exists a group G and a subgroup X of G such that eGX ∈ F (G) 6 e∆,p
H (G),

but eGX /∈ jK(G). Since ResGX(eGX) is a non-zero multiple of eXX , and since IndGX(eXX) is a
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non-zero multiple of eGX , we can assume that X = G. Since eGG ∈ eK(G)− jK(G), we have

eGG ∈ e∆,p
H (G), and β(G) ∼= K.

Since eGG ∈ e
∆,p
H (G), there exists a subgroup L of G×H such that

ẽGG
(
(G×H)/L

)
eHH 6= 0,

and such that k1(L) and k2(L) are p′-groups. It follows that p1(L) = G and p2(L) = H.
Moreover,

DefHH/k2(L)(e
H
H) 6= 0.

Since k2(L) is a p′-group and since H is a B∆,p-group, this implies k2(L) = 1. Therefore,
H ∼= G/k1(L). But since β(G) ∼= β(H) ∼= K, we have mG,k1(L) 6= 0, and then since k1(L)

is a p′-group, we have δp(G) ∼= δp(H) = H. Therefore, e∆,p
H = e∆,p

G , and so F = e∆,p
H .

This shows that the image of e∆,p
H in eK/jK is simple, and isomorphic to S∆,p

H,C. It
follows that ⊕

H:B∆,p-group
β(H)∼=K
up to iso.

S∆,p
H,C

is a subfunctor of SK,C. Now, since any composition factor of SK,C isomorphic to S∆,p
H,C is

generated by the image of eHH in SK,C(H), the simple functor S∆,p
H,C has multiplicity one in

SK,C. This completes the proof.

9.3 Corollary Let q 6= p be a prime. We have the following isomorphisms of p-bifree
biset functors.

(a)

S1,C ∼=
⊕

P : cyclic p-group
up to iso.

S∆,p
P,C .

(b)

SCp×Cp,C
∼=

⊕
P : non-cyclic p-group

up to iso.

S∆,p
P,C .

(c)

SCq×Cq ,C
∼=

⊕
D: cyclic p-group

up to iso.

S∆,p
Cq×Cq×D,C.
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Proof (a) If H is a finite group, then by [Bc10, Proposition 5.6.1], β(H) = 1 if and
only if H is cyclic. A cyclic group is a B∆,p-group if and only if it is a cyclic p-group.
Theorem 9.2 implies the result.

(b) If H is a finite group, then by [Bc23, Lemma 2.4], β(H) ∼= Cp × Cp if and only if
H = P ×C, where P is a non-cyclic p-group and C is a cyclic p′-group. Then δp(H) = P .
The result follows from Theorem 9.2.

(c) If H is a finite group, then by [Bc23, Lemma 2.4], β(H) ∼= Cq × Cq if and only if
H = Q×C, where Q is a non-cyclic q-group and C is a cyclic q′-group. Then C = D×E,
where D is a cyclic p-group and E is a cyclic p′-group. Then H = Q × D × E, and
δp(H) ∼= Cq × Cq ×D. The result follows from Theorem 9.2.

We now give a proof of the decompositions in Corollary 9.3 via the restriction-kernel
technique. We treat the case of the functor SCp×Cp,C, the argument for Part (c) is analo-
gous.

9.4 Proposition (a) Let G be a finite group. One has SCp×Cp,C(G) = {0} unless G is a

non-cyclic p-group.

(b) Let G be a non-cyclic p-group. Then SCp×Cp,C(G) is one-dimensional generated by

the image of eGG in SCp×Cp,C(G).

Proof First note that for any p-bifree biset functor S and finite group G, one has S(G) ⊆
ẽGGS(G). Indeed, one has S(G) = ẽGGS(G)⊕ (1− ẽGG)S(G) and (1− ẽGG)S(G)∩S(G) = {0}.

Now note that by [Bc23, Corollary 3.6], if ẽGGSCp×Cp,C(G) is non-zero, then G is p-
elementary. Furthermore, by the proof of [Bc10, Theorem 5.5.4], ẽGGSCp×Cp,C(G) is gener-

ated by the image eGG in SCp×Cp,C(G) of eGG if G is not cyclic and is equal to zero if G is
cyclic.

Suppose that G = P × C is a non-cyclic p-elementary group where P = Op(G). Then
eGG = ePP × eCC . Also if N EG is of p′-order, then G/N ∼= P × C/N and

DefGG/Ne
G
G = ePP ×DefCC/Ne

C
C .

Since C is a cyclic group, mC,C 6= 0 by [Bc10, Proposition 5.6.1] and hence

DefGG/Ce
G
G = mC,Ce

P
P × e

C/C
C/C 6= 0 .

This shows that SCp×Cp,C(G) = {0} unless C = 1. On the other hand if C = 1, then

SCp×Cp,C(G) = ẽGGSCp×Cp,C(G) is one-dimensional generated by eGG. In fact, in this case G

is a p-group and ResGHe
G
G = 0 for any proper subgroup H < G by [Bc10, Theorem 5.2.4].

This proves both parts.

9.5 Proposition Let G be a finite group. Then for any x ∈ SCp×Cp,C(G), there exists
x′ ∈ SCp×Cp,C(G) and α ∈ IG such that x = x′ + α · x.
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Proof Let x ∈ SCp×Cp,C(G). By the proof of Proposition 9.4, we have ẽGGSCp×Cp,C(G) =
{0} if G is not a non-cyclic p-group. In this case, we have x′ = 0 and α = 1− ẽGG. If G is
a non-cyclic p-group, then again by the proof of Proposition 9.4, we have SCp×Cp,C(G) =

ẽGGSCp×Cp,C(G). Thus, in this case, we choose x′ = ẽGG · x and α = 1− ẽGG.

These two results allow us to determine the full decomposition of SCp×Cp,C as a p-bifree
biset functor. It splits as a direct sum of simple functors indexed by non-cyclic p-groups,
each occurring with multiplicity one.

9.6 Theorem One has an isomorphism

SCp×Cp,C
∼=

⊕
P :non-cyclic p-group

S∆,p
P,C

of p-bifree biset functors.

Proof By Propositions 9.4 and 9.5 and Theorem 10.2, the composition factors of SCp×Cp,C

are exactly the functors S∆,p
P,C , where P is a non-cyclic p-group, each with multiplicity one.

We will show that each of these functors is a subfunctor.
Let F be a p-bifree biset subfunctor of S := SCp×Cp,C and let G be a minimal group

of F . Then we have {0} 6= F (G) ⊆ S(G) which by Proposition 9.4 implies that G is a

non-cyclic p-group and that F (G) is one-dimensional generated by eGG. Conversely, if G is
a non-cyclic p-group, then the subfunctor generated by S(G) has a minimal group G.

For a non-cyclic p-group P , let FP be the subfunctor of S generated by ePP . Then FP
has a minimal group P . Moreover, if P ′ is a p-group such that FP (P ′) 6= 0, then P is
isomorphic to a subgroup of P ′. Indeed, if X is a transitive p-bifree (P ′, P )-biset such that
X ◦ ePP 6= 0, then p2(X) = P and k2(X) = 1 = k1(X).

We claim that FP is a simple p-bifree biset functor isomorphic to S∆,p
P,C . To prove the

claim, it suffices to prove that if P ′ is a non-cyclic p-group not isomorphic to P , then
FP ′ 6⊆ FP . Indeed, if M is a proper nonzero subfunctor of FP , then the minimal group
of M is a non-cyclic p-group P ′ non-isomorphic to P . But then FP ′ ⊆ M , since M(P ′)

is one dimensonal generated by eP
′

P ′ . Now, as above, FP (P ′) = 0 if P is not isomorphic
to a subgroup of P ′. Also, if P is isomorphic to a subgroup of P ′, then FP (P ′) is one-
dimensional generated by IndP

′
P e

P
P , or by eP

′
P . In both cases, it follows that if P 6∼= P ′,

then eP
′

P ′FP (P ′) = 0. But eP
′

P ′FP ′(P
′) = FP ′(P

′) 6= 0. Thus, FP ′ 6⊆ FP and hence FP

is simple. Since FP (P ) is one-dimensional and generated by ePP which is invariant under

any automorphism of P , we have FP (P ) ∼= C. Therefore, FP ∼= S∆,p
P,C . This proves the

theorem.

10 Appendix

Let R be a commutative ring and let K be a field.

27



10.1 Lemma Let F be a (p-bifree) biset functor over R and G a finite group. Let Sec(G)
be the set of all proper subquotients of G. Then we have

F (G) =
⋂

H∈Sec(G)

α∈RB∆(H,G)

ker(F (α) : F (G)→ F (H)) .

Proof Denote the right hand side of the above equality by F (G). Clearly F (G) ⊆ F (G).
For the reverse inclusion, let T be a group of order less than |G| and let U 6 T × G.

Also let x ∈ F (G). It is sufficient to prove that(T ×G
U

)
· x = 0.

Write (T ×G
U

)
= IndTP InfTP/KIso(f)DefQQ/LResGQ

with the usual choices of letters. Thus(T ×G
U

)
·x = (IndTP InfTP/KIso(f)DefQQ/LResGQ)·x = IndTP InfTP/KIso(f)(DefQQ/LResGQ·x) = 0.

Here DefQQ/LResGQ · x = 0 since x ∈ F (G).

The following theorem is stated in [BCK] for Green biset functors. But one can easily
check that it is also valid for p-bifree biset functors. We include the proof for the sake of
self-containment.

10.2 Theorem [BCK, Theorem 2.5] Let F be a p-bifree biset functor over a field k and
let G be a finite group. Suppose that dimk F (G) < ∞, and that for every EG-submodule
M ⊆ F (G), one has

M = (M ∩ F (G)) + IGM. (∗)

Then, for every simple k[Out(G)]-module V , the following numbers are equal:

1. Multiplicity [F : SG,V ] of SG,V as a composition factor of F .

2. Multiplicity of V as a composition factor of the EG-module F (G).

3. Multiplicity of V as a composition factor of the k[Out(G)]-module F (G).

Proof The equality of the first two numbers are well-known. We prove the equality of
the last two numbers. Since dimk F (G) <∞, there exists an EG-composition series

0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = F (G)

of F (G). Set K := F (G), and consider the induced series

0 = (M0 ∩K) ⊆ (M1 ∩K) ⊆ · · · ⊆ (Mn−1 ∩K) ⊆ (Mn ∩K) = K
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of EG-submodules of K. Let V be a simple k[Out(G)]-module, and let i ∈ {1, . . . , n}.
We claim that if Mi/Mi−1

∼= V , then (Mi ∩ K)/(Mi−1 ∩ K) ∼= V . This implies that
[F (G) : V ] ≤ [K : V ]. But clearly, [K : V ] ≤ [F (G) : V ], and we obtain equality.

To prove the claim, observe that

Mi ∩K
Mi−1 ∩K

=
Mi ∩K

(Mi ∩K) ∩Mi−1

∼=
(Mi ∩K) +Mi−1

Mi−1
⊆ Mi

Mi−1

∼= V.

It therefore suffices to show that the left-hand side is nonzero. Assume by contradiction
that Mi ∩K = Mi−1 ∩K. Then,

Mi = (Mi ∩K) + IGMi ⊆ (Mi ∩K) +Mi−1 = Mi−1,

contradicting Mi/Mi−1
∼= V 6= 0. Here, we used the assumption that V is annihilated by

IG, and the hypothesis of the theorem.

10.3 Remark Let F be a p-bifree biset functor over K and let G be a finite group. It is
straightforward to prove that the condition in the above theorem is equivalent to any of
the following conditions. We include the proof of the equivalences from [BCK, Proposition
2.6] for completeness.

(1) For every subfunctor M of F one has M(G) = M(G) + JM(G).

(2) For every x ∈ F (G), there exist x′ ∈ F (G) and α ∈ IG with x = x′ + α · x.

Proof of equivalences: Suppose Condition (1) holds and let x ∈ F (G). Set M := 〈x〉 to
be the subfunctor of F generated by x. Then, by definition, JM(G) = IG · x, hence (2)
holds.

Next suppose (2) holds and let M be an EG-submodule of F (G). Also let x ∈ M .
Writing x as x = x′+αx, by (2), we see that x′ = x−αx ∈M . Hence M ⊆ (M ∩F (G))+
IGM . The reverse inclusion is trivial. Hence the condition (∗) of Theorem 10.2 holds.

Finally, suppose (∗) holds and let M be a subfunctor of F . Then it is easy to see that
M(G) is an EG-submodule of F (G), that M(G) = M(G) ∩ F (G) and that IGM(G) ⊆
JM(G). Hence (1) holds.

10.4 Proposition Let F be a semisimple p-bifree biset functor. For any finite group G,
we have

F (G) = F (G)⊕ JF (G).

In particular, for every x ∈ F (G), there exist x′ ∈ F (G) and α ∈ IG satisfying

x = x′ + α · x .
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Proof Let nH,V denote the multiplicity of the simple p-bifree biset functor S∆,p
H,V in F .

Then evaluating at G, we have

F (G) ∼=

(⊕
W

nG,WS
∆,p
G,W (G)

)
⊕

 ⊕
(H,V ):|H|<|G|

nH,V S
∆,p
H,V (G)

 .

Using arguments similar to the proof of Proposition 8.5, one can show that the first
summand is equal to F (G) and that the second summand is equal to JF (G). This proves
the first assertion. The second assertion follows from the above remark.
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