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Abstract

We introduce and study the category of p-bifree biset functors for a fixed prime
p, defined via bisets whose left and right stabilizers are p’-groups. This category
naturally lies between the classical biset functors and the diagonal p-permutation
functors, serving as a bridge between them. Every biset functor and every diagonal
p-permutation functor restricts to a p-bifree biset functor.

We classify the simple p-bifree biset functors over a field K of characteristic zero,
showing that they are parametrized by pairs (G, V'), where G is a finite group and V is
a simple KOut(G)-module. As key examples, we compute the composition factors of
several representation-theoretic functors in the p-bifree setting, including the Burnside
ring functor, the p-bifree Burnside functor, the Brauer character ring functor, and
the ordinary character ring functor. We further investigate the classical simple biset
functors Sg,c where G is a B-group.
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1 Introduction

The theory of biset functors, which was introduced and extensively developed by Bouc, oc-
cupies a central position in the functorial representation theory of finite groups. It enables
a unified treatment of representation rings when the structural maps restriction, induc-
tion, deflation, inflation, and isogation are present. The completion of the classification
of endo-permutation modules of p-groups [Bc06] and the description of the unit group of
Burnside rings of p-groups [Bc07], both due to Bouc, are two notable applications of the
theory of biset functors.

Diagonal p-permutation functors, introduced by Bouc and the second author [BY20],
provide a functorial framework for studying structures involving actions of p-permutation



bimodules with additional constraints. By replacing bisets with p-permutation bimodules
whose vertices are twisted diagonals, this theory captures essential representation-theoretic
phenomena, particularly those related to block theory. Diagonal p-permutation functors
have already found applications in the block theory of finite groups; see, for instance, the
finiteness result in terms of functorial equivalences, Theorem 10.6 in [BY22], which is in
the spirit of Puig’s and Donovan’s finiteness conjectures.

Although the two theories of biset functors and diagonal p-permutation functors are
both defined on categories of finite groups, there is no direct functorial connection between
them. However, their morphisms are related as follows. A diagonal p-permutation bimod-
ule is a p-permutation bimodule whose indecomposable summands have (twisted) diagonal
subgroups as vertices. The linearization map applied to bisets yields permutation, and
hence p-permutation bimodules. In particular, the elementary bisets

ResY (H <G), Ind§ (H <GQ), Iso(f) (f:G = H),

Infg/N,Defg/N (N <G, N anormal p’-subgroup)

give rise to diagonal p-permutation bimodules via linearization. In contrast, inflations and
deflations along general normal subgroups do not yield diagonal p-permutation bimodules
under linearization; see [BY20, Lemma 4.2]. This obstruction prevents the existence
of a direct functor between the categories of biset functors and diagonal p-permutation
functors.

Motivated by this observation, we introduce the notions of p-bifree bisets and p-bifree
biset functors. In fact, these are special cases of general notions introduced by Bouc [Bel0,
Section 4.1.9] and by Webb [W00, Section 8]. A p-bifree biset is a biset with p/-stabilizers
on both sides. The category of p-bifree bisets is similar to the classical biset category, but
only includes inflations and deflations via normal p’-subgroups. For a commutative ring
R with unity, we denote by RC*P the category whose objects are finite groups and whose
morphisms are given by the R-linear extension of the Grothendieck group RBAP(H,G)
of p-bifree (H,G)-bisets. An R-linear functor from RCA? to the category of R-modules is
called a p-bifree biset functor over R.

With this definition, the category of p-bifree biset functors lies naturally between
classical biset functors and diagonal p-permutation functors. On one hand, it contains
all classical biset functors via restriction to the p-bifree part of the biset category. On
the other hand, diagonal p-permutation functors factor through it via the linearization
map, since only bisets with p/-stabilizers induce diagonal p-permutation bimodules under
linearization. In this sense, p-bifree biset functors form a common generalization of both
theories, effectively building a bridge between them.

Using Bouc’s theory on linear functors [Bc96], we show that the simple p-bifree biset
functors Sé’g over R are parametrized by the pairs (G,V) of a finite group G and a
simple ROu]u(G)—module V. We also consider various representation rings as p-bifree biset
functors and determine their composition factors. Our main results can be summarized
as follows.



Let K be a field of characteristic zero. We prove that (Corollary 4.9) the composition
factors of the Burnside ring as the p-bifree biset functor over K are exactly the
functors Sé’ﬂg where G is a B2P-group. See Definition 4.3 for the definition of

BAP_group. The proof follows [Bcl0, Chapter 5] very closely.

The composition factors of the representable p-bifree biset functor KBAP (—,1) are
exactly the functors Sé ® where G is a B-group of p/-order (Corollary 5.4).

Let G be a finite group. The K-dimension of S 7 (G) is equal to the number of
conjugacy classes of cyclic p’-subgroups of G (Theorem 6.1).

We also investigate the p-bifree biset functor structures of the ordinary and Brauer
character rings of finite groups. Let C be an algebraically closed field of characteristic
zero and let k£ be an algebraically closed field of characteristic p > 0. Let Rc(G) and
Ry (G) denote the Grothendieck groups of CG and kG-modules, respectively. We
show that both CRc(—) and CRy(—) are semisimple p-bifree biset functors. One
has

CRe = @ SZ/mZ Ce
(m,€)

where (m, §) runs through the set of pairs consisting of a positive integer m and a p-
primitive character (see Definition 7.4) & of (Z/mZ)* (Corollary 7.7). Furthermore,

CRy, = @ SZ/mZ Ce
(m,€)

where (m, &) runs through a set of pairs consisting of a positive p’-integer m and a
primitive character £ of (Z/mZ)* (Corollary 8.4). As a result of these we obtain a
short exact sequence

0— @ SZ/mZ(CE — CR¢c — CR, — 0
m,E)

of p-bifree biset functors, where (m, &) runs through the set of pairs consisting of a
positive integer m divisible by p and a p-primitive character £ of (Z/mZ)*.

Finally, we consider some simple biset functors as p-bifree biset functors. Let Sq v
denote the simple biset functor associated to the pair (G, V') of a finite group G and
a simple COut(G)-module V. Then, if K is a B-group, we have an isomorphism

~ A’p
Skc = P Syt
H

of p-bifree biset functors, where H runs over a set of isomorphism classes of B2P-
groups with the property S(H) = K (Theorem 9.2).



2 Category of p-bifree bisets

Let p > 0 be a prime and let G, H and K denote finite groups.
We denote by p1 : H x G — H and ps : H x G — G the canonical projections. For a
subgroup L < H x G, we set

ki(L)={he€ H|(h,1) € L} and ko(L)={9€G|(l,9) € L}.
One has canonical isomorphisms
q(L) := L/(k1(L) x kz(L)) — pi(L)/ki(L)
for ¢ = 1,2, induced by the projections p;.

2.1 Definition Let X be an (H,G)-biset. We say X is a p-bifree (H,G)-biset if the
left and right stabilizers of the H x G-orbits of X are p’-groups. In other words, X is a
disjoint union of transitive (H, G)-bisets of the form [(H x G)/L] where ki(L) and ko(L)
are p/-groups.

2.2 (a) Let Hseté’p denote the category of p-bifree (H,G)-bisets. Using the Mackey
formula, one shows that the composition of bisets induces a bilinear map

Ap Ap Ap
Ksety” X gsetn™ — gset;™.

Let BAP(H,G) denote the Grothendieck group of the category Hseté’p . The product
of bisets induces a well-defined map

— .y —: BAP(K,H) x BAP(H,G) — BA(K,G). (1)

Recall from [Bcl0] that every transitive (H,G)-biset can be written as a product of five
elementary bisets:

[HXG

- ] = Indg(L) o Inf?*(F) oIso(f) o Def?2(£) o Resg’;(L) ,

p1(L)/k1(L) p2(L)/k2(L)

where f : pa(L)/ka(L) — p1(L)/k1(L) is the canonical isomorphism. One has Infg/N €
BAP(G,G/N) if and only if N is a p/-subgroup of G. Similarly, Defg/N € BA?(G/N,G)
if and only if N is a p/-subgroup of G. Hence B~P(H,G) is generated by bisets of the
above form for ki (L) and ko(L) p’-groups.

(b) Let R be a commutative ring with 1. Let RC*P denote the following category:
e objects: finite groups,

e Hompea, (G, H) = R®z BAP(H,G) = RBAP(H,G),



e composition is induced from the map in (1),
o ldg = [ldg] = [G].
(c) Let G be a finite group. We set

Ie= ). RB*P(G,H)oRB*(H,G).
|H|<|G|

Note that I is an ideal of the endomorphism ring Endgea,(G) = RBAP(G,G). The
quotient

EAP(G) := RBAP(G,G)/1g

is called the essential algebra of G in RCAP.

A transitive p-bifree (G, G)-biset (G x G)/L has zero image in E2P(G) if and only if
lg(L)| < |G|. Hence as in the usual biset category, see [Bcl0, Proposition 4.3.2], we have
an isomorphism

EAP(@) =2 ROUL(G).

3 p-bifree biset functors

In this section, we classify the simple objects in the category ]-"}%’p of p-bifree biset functors
over a commutative ring R. Our construction follows the general theory of linear biset
functors developed by Bouc in [Bc96].

3.1 Definition An R-linear functor RC®P? — gMod is called a p-bifree biset functor over
R.

Together with natural transformations, p-bifree biset functors over R form an abelian
3 A7p
category which we denote by Fp™.
By [Bc10, Theorem 4.3.10], the simple p-bifree biset functors over R are parametrized
by the pairs (G, V) where G is a finite group and V is a simple ROut(G)-module. For a
given pair (G, V) we denote the corresponding simple p-bifree biset functor by Sé v

3.2 Remark (a) Every biset functor becomes a p-bifree biset functor via the restriction
along the inclusion RCAP C RC, where RC denotes the usual biset category over R.

(b) Let RppkA denote the diagonal p-permutation category over R, see [BY20, Def-
inition 2.6], or [BY22, Section 1]. The linearization map X +— kX induces a functor
RCAP — RppkA. This makes every diagonal p-permutation functor over R a p-bifree biset
functor.



3.3 Definition Let I’ be a p-bifree biset functor over R. A simple p-bifree biset functor
S is called a composition factor of F, if there exist subfunctors Fp < F} < F such that
Fi/F, = S.

Note that if F' is a p-bifree biset functor over a field, then F' admits a composition
factor. This follows since the proof of [Bcl8, Lemma 9.7(i)] applies verbatim to p-bifree
biset functors; see also the remarks at the beginning of [BST13, Section 3].

3.4 Definition Let F' be a p-bifree biset functor and let G be a finite group. We define
the submodules F'(G) and JF(G) of F(G) by

F(G) = (| Ker(F(a): F(G) - F(H))
|H|<|G|
a€RB2P(H,G)
and
JF(G) = > Im(F(a): F(H) = F(G)).
|H|<|G]

a€ERBAP(G,H)

Notice that both F(—) and JF(—) are subfunctors of F. The subfunctor F'(—) is called
the restriction kernel of F'. These restriction kernels serve as a tool for detecting minimal
groups and composition factors. They will be used repeatedly in later sections to describe
the subfunctor structure and to prove that certain families of simple functors exhaust all
composition factors. See Appendix for more properties of the restriction kernels.

4 Burnside ring as a p-bifree biset functor

Let R be a commutative ring with identity and let K be a field of characteristic zero. The
Burnside functor RB : RCAP — rMod is defined as the restriction of the Burnside biset
functor RB to the p-bifree biset category, that is,

e G — RB(G) := R®z B(G).
e X € RBAP(H,G) + (RB(X): RB(G) — RB(H), U+ X -gU).

In this section we analyze the structure of RB. It turns out that the results are very
similar to those in Chapter 5 of [Bcl0], where the structure of the Burnside functor is
described in terms of B-groups. In our setting, the same arguments apply almost line by
line once one restricts to inflations and deflations along normal p’-subgroups. We include
the full details here for completeness and to set up the theory in the context of p-bifree
biset functors. The notion of a B®P-group plays the role of a B-group in this setting,
and many structural results, including the parametrization of composition factors and the
poset of subfunctors, carry over with suitable modifications. The first and key result is the
following characterization of evaluations of subfunctors. We refer to [Bc10, Lemma 5.2.1]
for its proof.



4.1 Lemma Let F' be a p-bifree biset subfunctor of RB. Then for any finite group G,
the R-module F(QG) is an ideal of RB(G).

Note that KB(G) is a split semisimple K-algebra. In particular, every ideal of KB(G) is
generated by a set of primitive idempotents.

The primitive idempotents €% of KB(G) are indexed by the conjugacy classes [s¢]
of subgroups H < G. Let eé’p denote the p-bifree biset subfunctor of KB generated by
eg € KB(G). We note that this is in general smaller than the biset subfunctor e of KB
generated by eg. Recall from [Bcl0, Theorem 5.2.4] that for a normal subgroup N of G
we have

G/N
Defg/Neg = vaNerN )
where the deflation number mq v is given by

1
man =1z Y [X[u(X,G).
Gl e

Recall from [Bcl0, Definition 2.3.12] that a section (Y, X) of a finite group G is a
pair of subgroups of G with X <Y. The quotient group Y/X is called the subquotient
associated with (Y, X).

4.2 Proposition Let G be a finite group. The following conditions are equivalent.

(i) The evaluation of the subfunctor eé’p vanishes on all groups of smaller order, that
is, e5"(H) = {0} for all |H| < |G.

(i) If eé’p(H) # {0} for some finite group H, then G is isomorphic to a subquotient
Y /X associated with a section (Y, X) of H with X a p'-group.

(i) The deflation number mg n vanishes for every non-trivial normal p’-subgroup
N <@G.

(iv) The deflation Defg/Neg is zero in KB(G/N) for every non-trivial normal p'-
subgroup N <G.

Proof The equivalence (iii) <= (iv) follows directly from Theorem 5.2.4 in [Bc10].
Suppose (i) holds. Let N < G be a non-trivial p’-subgroup. Then the image of eg under

deflation lies in eé’p(G/N) = {0}, so Defg/Neg = 0, and hence (iv) holds. Now suppose
(iv) holds and let H be a finite group such that eé’p (H) # {0}. Then there exists

¢ € KBAP(H,G) such that p(ef) # 0. In particular there exist sections (Y, X) of H and
(T, S) of G, with X and S p-groups, and an isomorphism f : T/S — Y/X such that

Indglnf%xlso(f)Def%/SResg(eg) # 0.

By [Bc10, Theorem 5.2.4], the restriction of eg to a proper subgroup is zero, hence T' = G.
Condition (iv) further implies that S = 1. This proves (ii). Finally, (ii) = (i) is immediate.
0



4.3 Definition A finite group G is called a B2P-group if for any non-trivial normal p/-
subgroup N of G, the deflation number mg y is equal to zero.

4.4 Remark When the condition on N is removed, we recover Bouc’s definition of a
B-group. These two definitions can be compared as follows:

(i) Every B-group is a B~P-group.
(ii) Every p-group is a B*P-group.

(iii) A p-group which is also a B-group is either trivial or elementary abelian of rank
2, by 5.6.9 of [Bcl0].

(iv) A p/-group is a BAP-group if and only if it is a B-group.

4.5 Theorem Let G and H be finite groups. Then the following hold:

(i) If H is isomorphic to a quotient of G by a p'-subgroup, then eé’p - eﬁ’p .

(ii) If H is a BAP-group and eé’p C eﬁ’p, then H is isomorphic to a quotient of G by
a p’-subgroup.

(iii) If F is a subfunctor of KB and H is a minimal group of F, then H is a B®P-group,
F(H) =Kek, and efl’p C F. In particular, eﬁ’p(H) = Kel if H is a BAP-group.

(iv) The minimal group 6,(G) of eé’p is uniquely determined up to isomorphism. One
has eé’p = e?p’g’G), and 0,G) is isomorphic to a quotient of G by a normal p'-subgroup.
Moreover, for any normal p’-subgroup N <G such that G/N = 6,(G), one has mg n # 0.

(v) Let 5(G) be a minimal group of the biset subfunctor e of KB generated by the
idempotent €. Then 3(3,(G)) = B(G).

Proof (i) Let N <G be a p'-subgroup such that G/N = H via an isomorphism f. Then,
by [Bc10, Theorem 5.2.4], one has

eglnfg/NIso(f)eg = &,

s0 €& € e5?(G) and hence eé’p Cep”.

(i) Since €& € eﬁ’p(G) =KBAP(G, H)el, there exist sections (T, S) of G and (Y, X)
of H with S and X p’-groups and an isomorphism f :Y/X — T/S such that

eglndglnf%slso(f)Def})j/XRes{/Ieg # 0.

As in previous arguments, since the restriction of eg to a proper subgroup is zero, we have
Y = H, and since H is a B®P-group, we get X = 1. Also because eg[G/L] = 0 for any
proper subgroup L, we have T'= G and the result follows.

(iii) This follows from the proof of Proposition 5.4.9 in [Bcl0] applied in the p-bifree
setting. The minimality of H implies that F'(H) is generated by eg, and hence eﬁ’p CF.



(iv) This is a direct adaptation of Proposition 5.4.10 in [Bcl0], replacing all normal
subgroups with normal p’-subgroups.

(v) First note that the group S(G) is uniquely determined, up to isomorphism, by
[Bcl0, Proposition 5.4.10]. Let N <G be a p’-normal subgroup with G/N = §,(G). By
Part (iv), we have mg n # 0 which is equivalent to 5(6,(G)) = B(G/N) = 5(G) by [Bcl0,
Theorem 5.4.11]. U

The following theorem collects properties of the minimal group d,(G) of the subfunctor

eé’p . As in the classical case, the key results follow from Theorem 5.4.11 in [Bcl0], and

the same arguments apply here with the necessary modifications to the p-bifree setting.

4.6 Theorem Let G be a finite group.

(i) Let H be a B®P-group that is isomorphic to a quotient of G by a normal p'-subgroup.
Then H is also isomorphic to a quotient of 6,(G) by a normal p'-subgroup.

(ii) Let N < G be a normal p'-subgroup. The following are equivalent:

(a) mgn #0,
(b) 6,(G) is isomorphic to a quotient of G/N by a p'-subgroup,
(c) 0p(G) = 6p(G/N).

(iii) In particular, if N < G is a normal p'-subgroup, then G/N = §,(G) if and only if
G/N is a BAP-group and mg y # 0.

Let BAP-gr denote the class of BAP-groups, and let [BA’p—gr] be a fixed set of represen-
tatives of their isomorphism classes. Define a relation > on B*P-gr by declaring G > H
if and only if H is isomorphic to a quotient of G by a p/-group. A subset M C BAP-gr is
said to be closed if, whenever H € M and G > H, it follows that G € M.

The following result describes the lattice of subfunctors of the Burnside functor KB in
terms of these closed subsets. Its proof is the same as that of Theorem 5.4.14 in [Bcl0],
with the necessary modifications to the p-bifree bisets.

4.7 Theorem Let S be the set of p-bifree biset subfunctors of the Burnside functor
KB, ordered by inclusion, and let T be the set of closed subsets of the set [B*P-gr] of
isomorphism classes of B®P-groups, ordered by inclusion. Then the assignment

©:F s {H € [B*-g1] | e5” C F}
defines an isomorphism of posets © : S = T.

Its inverse is given by
U:A— Z eﬁ’p .

HeA



We now describe the composition factors of the Burnside functor KB as a p-bifree biset
functor. For each BAP-group G, the subfunctor eé’p is crucial, and its maximal proper
subfunctor determines a unique simple quotient. We refer to Section 5 of [Bc10] for the
proofs of the following results up to the end of the section.

4.8 Proposition (i) Let G be a BAP-group. Then the functor eé’p has a unique maximal

subfunctor
'A7p — A7p
JG - Z eH )
He[BAP-gr]
H>G, H*G
and the quotient eé’p / jé’p is isomorphic to the simple functor S(A; v

(ii) Let F C F' be subfunctors of KB such that F'/F is simple. Then there exists a
unique G € [BAP-gr] such that eé’p C F’" and eé’p ¢ F. In particular, one has

eg? +F=F, ex’nF=j3* and F/F=S;t.

4.9 Corollary The composition factors of KB as a p-bifree biset functor are precisely
the simple functors SCA; P, where G runs over the set [B*P-gr].

To compute the evaluation of the simple functor SéK at a finite group H, we first describe

the structure of eé’p (H) in terms of the subgroup lattice of H.

4.10 Proposition Let G and H be finite groups. Then the evaluation eé’p(H) is the
subspace of KB(H) spanned by the idempotents eg, where K runs over a set of represen-
tatives of conjugacy classes of subgroups of H satisfying K > 6,(G).

This description allows us to compute the dimension of Sé ®(H) explicitly in terms of the
minimal groups 6,(K’) associated with the subgroups K < H.

4.11 Theorem Let G be a BAP-group and H a finite group. Then the K-dimension
of SCA;’HQ(H) is equal to the number of conjugacy classes of subgroups K < H such that
5p(K) = G.

5 The functor KBAP

In this section, we study the representable functor KB*P(—,1), which assigns to each
finite group G the K-vector space KBAP (G, 1). This functor is a p-bifree analogue of the
classical representable biset functor KB(—, 1), and its structure can be analyzed using the
same tools developed for the Burnside functor. In particular, we show that its composition
factors are parametrized by B-groups of p’-order, and we describe the corresponding simple
functors explicitly. We introduce this functor as a Grothendieck group as follows.

10



Let R be a commutative ring with identity and let K be a field of characteristic zero.
Let G be a finite group. A left G-set is said to be left p-free, if it is a disjoint union of
transitive G-sets with p/-stabilizers. Let gset®P denote the category of left p-free G-sets.
One can similarly define the category seté’p of right p-free G-sets. Identifying a G-set X
with a (G, 1)-biset induces an isomorphism gset™P =2 GsetlA’p

Let BAP(G) denote the Grothendieck group of the category gset™? with respect to
disjoint unions. Note that

B (@) = P zla/H],

HE[SG]p/

where [sg],y denotes a set of representatives of the G-conjugacy classes of p’-subgroups
of G. The direct product of G-sets induces a commutative ring structure on BP(G).
In fact, the direct product of two transitive left p-free G-sets is a disjoint union of such
transitive bisets; see, for instance, [Bc00, Equation 3.1.2].

5.1 Remark Let H and K be subgroups of G. Then
(G/K)"| = [{z € G/K|H" C K}|.

In particular, if K is a p/-group, i.e., if [G/K] € BAP(G) and if H is not a p/-subgroup,
then |(G/K)H| = 0. This means that the mark morphism

)= 11 z = (XD rese)
HG[SG
restricts to a map
¢ : BAJ) _> H Z (’X ‘)HE[Sg]p/
HE[Sg] ’

which we denote again by ¢. It follows that the primitive idempotents of KB~P(G) are
precisely the idempotents e% € KB(G) where H is a p’-subgroup of G. Setting

G ._ G
ep/ = Z CH
HE[Sg]pl
we have

KB2?(G) = e5KB(G) = KB(G)eS = eSKB(G)els

5.2 Remark Note that the commutative ring BP(G) does not have an identity element
unless G is a p’-subgroup.

We consider the functor RBAP : RCAP — prMod defined as

11



e G +— RB>P(Q@).
e X € RBAP(H,G)— (RB(X): RBA?(G) = RBAP(H), Uw X g U).

Note that RBA? is isomorphic to the representable functor RBAP(—, 1) at 1. Also, it
is a p-bifree subfunctor of RB.

By Theorem 4.7, the poset of the subfunctors of KB*? is isomorphic to the poset of
closed subsets of

O(KBAP) = {H € [B-gr] |ef? C KBAP}.

This observation allows us to identify the minimal groups contributing to the functor
KBA. The next result shows that they are exactly the B-groups of p/-order, in the sense
of Boucs theory.

5.3 Lemma Let H be a BAP-group. Then efl’p C KBAP if and only if H is a p'-group.

Proof Suppose efl’p C KBAP. Then el € eﬁ’p(H) C KBAP(H). By Remark 5.1, H is

a p/-group. Conversely, if H is a p/-group, then el € KBAP(H) and hence efl’p C KBAP.
O

As a consequence, we obtain the following classification of composition factors.

5.4 Corollary The composition factors of the p-bifree biset functor KB*P are the func-
tors S(A; ® where G is a B-group of p'-order.

6 The simple functor Sfﬁg

We now turn to the simple functor SlA, %, corresponding to the trivial group and the
trivial module. This functor plays a foundational role in the theory, as it appears as
a composition factor in both the Burnside and character functors. In this section, we
compute the dimension of Sf % (G) for an arbitrary finite group G, and show that it is
governed by the number of conjugacy classes of cyclic p’-subgroups of G.

Let R be a commutative ring with identity and let K be a field of characteristic zero.
Let (G, V) be a pair of a finite group G and a simple ROut(G)-module V. We first describe
the simple functor Sé"’} in more detail.

Let Eg := RB®P?(G, G) denote the endomorphism algebra of G in the category RCAP.
Then EA4P(G) = Eg/Ig = ROut(G). We consider V as a simple Eg-module and define
the functor Lg v by

Lev(H) = RBAP(H,G) ®p, V.

12



Then by [Bc96], L, has a unique maximal subfunctor Jg,1y whose evaluation at a finite
group H is given by

Jeov(H) = {in ®vi € Ly (H) |Vy € RBM(G,H) : Y (y -5 25)(vi) = o} :
i i
The simple functor Sé’{; is defined as the quotient Lg v /Ja v .

We compute the K-dimension of SlA i (G) inspired by the proof of [Bc96, Proposition 8.

Note that the functor L; x is isomorphic to the functor KBAP. Moreover for any finite
group G, identifying L1 x (G) with KBAP(G) one has

J1x(G) = {X € KB*P(G)|VY € KBAP(G) : |G\ (Y x X)| = 0}.
This implies that the dimension of SlA ¥ (G) is equal to the rank of the bilinear form
(=, =) : KBA(G) x KBAP(G) = K, (X,Y) |G\ (Y x X)|.

The set of primitive idempotents {eg} Helsaly form an orthogonal basis with respect to
this bilinear form. Moreover, for H € [sg],/, one has

(inefi) =16\ 1 = H%rmmm
¢1(H)
’NG \J),EZH <ZK<H ~ [Ne(H)]

where ¢1(H) is the number of elements x € H such that (x) = H. This is non-zero if and
only if H is cyclic. This proves the following.

6.1 Theorem Let G be a finite group. The K-dimension of Sﬁg(G) is equal to the
number of conjugacy classes of cyclic p’-subgroups of G.

6.2 Remark Let G be a finite group. Then §,(G) = 1 if and only if G is a cyclic p’-group.
Thus, Theorem 6.1 is a special case of Theorem 4.11.

7 The functor of complex character ring

Let C be an algebraically closed field of characteristic zero. We denote by Rc(G) the
Grothendieck group of finite dimensional CG-modules with respect to short exact se-
quences. For a commutative ring R with unity, we set RR¢(G) := R ®z Rc(G).

We identify CR¢(G) with the C-vector space of class functions from G to C. If X is
a p-bifree (H, G)-biset, then tensoring with CX over CG induces a well-defined C-linear
map

CRc(X) : CRc(G) — CRe(H).

This endows CRc(—) with a structure of p-bifree biset functor over C.

13



7.1 Remark Given a pair (G,V) where G is a finite group and V is a simple COut(G)-
module, let Sy denote the associated simple biset functor over C. By [Bcl0, Corol-
lary 7.3.5], there is a canonical decomposition of biset functors

CRc = B Szmzce »
(m.§)

where (m, §) runs through the set of pairs consisting of a positive integer m and a primitive
character  : (Z/mZ)* — C*. For each finite group G, we therefore view Sz/z7,c,(G) as
the corresponding direct summand (hence a subspace) of CR¢(G) afforded by the above
canonical decomposition. Restricting along the inclusion of the p-bifree biset category
yields the same equality of p-bifree biset functors. Note that Sy /mZC, is not necessarily
simple as a p-bifree biset functor.

Our aim in this section is to describe the composition factors of CR¢(—) as a p-bifree
biset functor.

For a cyclic group Z/mZ and a primitive character & : (Z/mZ)* — C*, we denote by
¢ the class function from Z/mZ to C obtained by extending £ by 0, i.e., for z € Z/mZ,

Eo) = {g(x), if z € (Z/mZ)*

0, otherwise .

7.2 Proposition Let G be a finite group. Let also m be a positive integer and £ a prim-
itive character of (Z/mZ)*. Then for any x € Sz/mz,c,(G), there exists X' € Sz/mz.c, (G)
and o € I such that

x=x+a-x.

Proof We divide the proof into several steps.

Step 1: By Proposition 1.5(iv) of Chapter 3 of [BHabil], for any x € CRc(G), we
have

X = ﬁ Z ‘L|M(L7K)Ind§ReS§X-
L<K<G
K cyclic

It follows that if G is not a cyclic group, the claim holds by putting X’ = 0 and setting

1 GxG
L<K<G
K cyclic

Note that this also shows that S7/,,7.c,(G) = {0} unless G is cyclic.

Step 2: Now suppose G = Z/nZ is a cyclic group. If n is not a multiple of m, then
by [Bcl0, Corollary 7.4.3] Sz/mz.c.(Z/nZ) = {0} and hence there is nothing to prove.

14



Therefore, assume that n is a multiple of m and let x € Sz/7.c, (Z/nZ). Then we can
write

X = &&x + (1 —&g)x.
Since 1 — ég € Ig, it is sufficient to consider égx. But the functor Sy, /mZC, i generated
by &, and suppose that

-G [GXZ/mZ
@G el T

} "Z/mZ 3

is non-zero for some L < G X Z/mZ. Since Z/mZ is a minimal group for the func-
tor Sz/mz,c,, it follows that pa(L) = Z/mZ and ke(L) = {1}. Moreover, by [Bcl0,
Corollary 2.5.12 and Theorem 5.2.4], we have pi(L) = G. It follows that the space
égSZ JmZCe (@) is one dimensional generated by the inflation églnf%mzf . Hence we may
put égx = égInfg/mZé

Let N < G be such that G/N = Z/mZ. Write N = N, x N. Assume first that
Ny # 1. Then, by [Bcl0, Corollary 2.5.12 and Theorem 5.2.4], one has

SGInfC (G \eOnfC ¢ e e (G GG (/N 2

(ecInfgy Defq)y ecnfe & = églnfgy (Defg y eqnfe y )nfg "€

-G a ,,G/Np/ G/Np/ ~
= ma,nN,, eGInfG/Np, eG/Np/ InfG/N

e G/Ny - . G/N, ~
= man, eG(Infg/Np/ eG/NZ/ )InfG/Np/ Infg/Np

~G G &
= manN, eGInfG/N§ .

Since G is cyclic, mg,n, # 0 by [Bc10, Proposition 5.6.1]. Thus, the condition is

satisfied by putting x¥’ = 0 and a = mé,N égInfg /Np,Defg N, This also shows that

Sz/mz.c(G) = 0.

Step 3: Now suppose that Ny = 1, s0 N is a cyclic p-group. Note that the restriction of
églnfg/Nf to a proper subgroup is equal to zero. Hence if G is a p-group, then églnfg/N§ €
S2/m2,Ce (G). Again, the condition is satisfied in this case too.

Suppose G is not a p-group, then
~ P 1 -
EGInfE & = @l > IK|u(K, G)Indf ResFInfd €
K<G

1 - G/N 7
= € Z | K |pu(K, G)Ind%}lnfg/(KﬂN)Iso(f 1)ResK§V/N§
K<G

1 -
= o > KK, G)IndFInf e Iso(f 1) €,

| | K<G:KN=G

15



where f : K/K NN — KN/N is the canonical isomorphism. Note that since N is a
p-subgroup of G, the condition KN = G holds if and only if G,y € K and K,N = G,,.
There are two cases:

(i) If N < G)p, then NK, = G, holds if and only if K, = G, because G, is a cyclic
p-group, and in this case we get K = G.

(ii) If N = G, then K, can be any subgroup of G, so K is any subgroup with G,y C K.
In Case (i), we get
~ x 1 N £
EGInfG & = @l > KK, GYIndFInf e pIso(f 1) €
K<G:KN=G

On the other hand, in Case (ii), we obtain

Z K |p(K, G)IndIG(Infg/(KmN)ISO(f_I) £.

Gmiiné =
G <K<G

Here we have u(K,G) = u(|G : K|), the number theoretic Mobius function. We have
w(|G:K|)=1ifG=K,itis —1if |G : K| = p and 0 otherwise. Hence the above equality
becomes

- -1
EGInfE & = Infg/NIsof—];Indlnff(/(KmN)Iso(f_l)g,

where K is the unique subgroup of index p of G. Now for any non-trivial p’-subgroup M

of GG, we have
. N
Def§ ), InfG € = Infg ) Def&/ ) € =0

since |G : NM| < |G : N| = m and since G/N = Z/mZ is a minimal group for the functor
Sz,/mz,c,- Hence églnfg/Nf € Sz/mzc.(G) in Case (i).

For Case (ii), we need to evaluate

1
Def& (Infg nlso€ - Z—)IndInf% Sy Isol f‘1)§> .
The first term is zero, by the above calculations. We also evaluate the second term:
1N £ G/M K/(KNN 1N\ g
DefS,,dInf§ ey Is0(f 1) € = IndInf(, Def s iy Js0(F ) € =0

K/(M(KNN))

since |[K : M(KNN)| <|K : KN N|=m. Hence églnfg/Né € Sz/mz.c.(G) in Case (ii)
too. The result follows. U
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7.3 Notation Let m € N and let £ be a primitive character of (Z/mZ)*. Let n € Ny and
1~et G = Z/mp"Z be~ the cyclic group of order m - p™. We set &, pnp = Inf(GZX/mZ)Xﬁ and

Note that for z € G, one has

P e {Infg/mzéw if (2) = G
m,n,p -

0, otherwise.

7.4 Definition Let k € N. We call an irreducible character x of (Z/kZ)* p-primitive, if
x is inflated from a primitive character of (Z/mZ)* for some m | k such that k/m is a

— InfZ/F2)"

power of p, that is, x (Z /mZ)Xg for some primitive character &.

Note that the character &, , above is p-primitive.

7.5 Corollary Let G be a finite group, m a positive integer, and £ a primitive character
of (Z/mZ)*.
(a) Sz/mz.ce(G) = {0} unless G is a cyclic group of order mp™ for some integer n = 0.
(b) If G is a cyclic group of order mp™ for some n > 0, then S2./mz,Ce (G) is one-

dimensional generated by Em,n,p.

Proof Part (a) follows from Steps 1 and 2 in the proof of Proposition 7.2, while Part (b)
follows from Step 3. g

Now we show that the functor Sz,,7.c ¢ is semisimple as a p-bifree biset functor.

7.6 Theorem Let m be a positive integer and let £ be a primitive character of (Z/mZ)*.
Then

~ A7p
SZ/mZ,(Cg - @ SZ/mp“Z,(Cgm’nyp
neNp

as p-bifree biset functors.

Proof As before we regard S := Sz/mz.c casa subfunctor of CR¢. By Proposition 7.2,
Corollary 7.5 and Theorem 10.2, the composition factors of S are exactly the functors
SZA /51 L Cer each with multiplicity one. We will show that each of these functors
appears as a subfunctor. Let F' be a p-bifree biset subfunctor of S and let G be a minimal
group for F. Since F(K) = 0 for any group K with |K| < |G|, we have 0 # F(G) C S(G).
By Corollary 7.5, it follows that G is a cyclic group of order m-p™ for some natural number
n, and that F(G) is one-dimensional generated by émm,p = églnf%mzf . Conversely, if G
is a cyclic group of order m - p", then S(G) # 0 and the subfunctor generated by S(G) has
a minimal group G.
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For any natural number n > 0, let G,, = Z/mp"Z be a cyclic group of order m - p™ and
let F,, be the subfunctor of S generated by ém,n,p. Then by the discussions above F, has
a minimal group G,. We claim that F;, is a simple p-bifree biset functor. It is sufficient
to show that F, p € F, for any k& > 1. Indeed, if F,, has a non-zero subfunctor M, then
the minimal group of M is G4+ for some k£ and by definition F,, . C M.

Let & > 1. Since |Gpyx|/|Gn| is a p-power, the space CBAP(G iy, Gp) © Fy(Gy) is

one-dimensional, generated by Indg:”gm,n,p. In particular, ég::Fn(Gn +x) = 0. But,
ég:i:Fn+k(Gn+k) = Foik(Gnir) # 0. Hence, F, 1) € F,, as required. This shows that

F,, is simple. Moreover, for any x € (Z/mp")*, we have x - émm,p = §m,n7p(x)§~m7n7p which
implies F;,(G,) = Cg,, ,, - This shows that F}, = Sé;p C and theorem is proved. [

Em,n,p

These calculations show that CRc decomposes into a direct sum of simple p-bifree
biset functors indexed by pairs (m, §), where m is a positive integer and ¢ is a p-primitive
character of (Z/mZ)*.

7.7 Corollary One has

~ A,
CRe = @ SZ/fnZ,(Cg
(m.€)

where (m, &) runs through the set of pairs consisting of a positive integer m and a p-
primitive character § of (Z/mZ)*.

Proof By Remark 7.1 and Theorem 7.6, we have

~ Avp
Che = @ @ SZ/kanv(CXk,n,p
(k,x) neNo

where (k, x) runs through the set of pairs consisting of a positive integer k and a primitive
character x of (Z/kZ)*. We may write the above sum as

CrRe= PP SZA/’;Z,C

X 1
meN (1) m/p%hp

where (I,x) runs through the set of pairs of a non-negative integer [ with p'|m and a
primitive character x of (Z/(m/p')Z)*. By the definition of Xy 5, it follows that as p!
runs over p-power divisors of m, the characters x,,, /pl1,p Tuns over all p-primitive characters
of (Z/mZ)*. The result follows. U

We now present an alternative proof of Theorem 7.6 and Corollary 7.7. This proof was
suggested by an anonymous referee, whom we thank for this valuable contribution.

7.8 Theorem The p-bifree biset functor CR¢ is semisimple.
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Proof (Referee) Let G and H be finite groups and let U be a p-bifree (H, G)-biset. For
a class map ¢ : G — C, we denote by Up the map CRc(U)(¢) : H — C. By [BclO0,
Lemma 7.1.3], this map is given by

1
he H, (Up)(h) = > elg).
uelU
geG
hu=ug
Denote by (—,—)g the standard inner prouct on CRc(G) and note that for any 6 €
CRc(H), one has

(Up,0) i = (p,U"0)c,

where U°P denotes the opposite biset. It follows that if F' is a subfunctor of CR¢, then
the map

G — FH(G) := {¢ € CRc(G) | V¢ € F(G), (¢, )¢ = 0}

defines a subfunctor F- of CR¢. Moreover, for any finite group G, since the product
(—, =g is positive, we have F(G) N FX(G) = {0}. It follows that F(G) @ F*(G) =
CRc(G), since the product (—, —)¢ is non-degenerate. In other words F' @ F+ = CRc.

It follows more generally that if F’ < F are subfunctors of CR¢, then I/ < F < FoF’
so F = F @ (FNFY), and F N F'" is a subfunctor of I isomorphic to F/F’. So any
subquotient functor of CR¢ is in fact isomorphic to a subfunctor of CRc.

Now let ¥ denote the sum of all simple subfunctors of CR¢. Then ¥ @ ¥+ = CRc.
Suppose that ¥+ # {0} and let T = F/F' be a composition factor of ¥+, where F/ < F
are subfunctors of £+. Then there is a simple subfunctor T} of F, isomorphic to T, such
that F' = F" @ Ty. But then T} is a simple subfunctor of CR¢, so T} < X. Thus

{0} #T1 <TNF<ENYt ={0}.
This contradiction shows that ¥ = CRc, i.e., CR¢ is semisimple. U

An alternative proof of Theorem 7.6 (Referee): Let m be a positive integer and let
¢ :(Z/mZ)* — C* be a primitive character. Then the simple biset functor S7/mz.,Ce 18
a direct summand of CR¢, and by Theorem 7.8, CR¢ is semisimple as a p-bifree biset
functor. It follows that Sz /mz.c .18 also semisimple p-bifree biset functor.

Let Sﬁ}v be a simple direct summand of Sz/mzc.. Let f be a non-zero element
of Sﬁ}V(H) and ¢ € H such that f(z) # 0. Since H is a minimal group for SI%,Vv it
follows that (z) = H, so H is cyclic. Set n = |H|. Now V is a simple module for
Out(H) = (Z/nZ)*, so V = C, for some character A : (Z/mZ)* — C*. The action of
a € (Z/nZ)* onV =C, is given by a - 1¢c, = A(a)lc,. It follows that o - f = A(«) f, and
we can assume that f = X, where \ : Z/nZ — C is equal to A on (Z/nZ)* and to 0 on
Z/nZ\ (Z/nZ)*.
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But \ € SZA/ZZ’CA (Z/nZ) € Szjmz.c(Z/nZ). So, in particular, Sz/mz,c,(Z/nZ) # 0

and hence m|n by [Bcl0, Corollary 7.4.3]. Moreover, since Sz/,z,c, is simple, the biset
subfunctor <5\> of CRe generated by A is equal to S, /mzCe- This in turn is generated by
the map é : Z/mZ — C. In particular,

CB(Z/mZ,Z/nZL)(X) = (\(Z/mZL) = Szmz,c.(Z/mZL) = CE.

Equivalently, there exist a subgroup L < Z/mZ x Z/nZ and a non-zero scalar a € C such
that aé = ((Z/mZ x Z/nZ) /L) (\). Setting A := py(L), B := ki(L), C := pa(L) and
D := ko(L), we have

af = Indi/mzlnfﬁ/BIso(go)Defg/DRes%/nZ(5\) ,

where ¢ : C'/D — A/B is the canonical group isomorphism. Since this is non-zero and

Z/mZ is a minimal group for Sy /mZCe, We have A =7Z/mZ and B = 1. Moreover, since

Z/nZ is a minimal group for SZA/’Z 7., ANy proper restriction of \ is equal to 0. It follows

that C =Z/nZ and C/D = A/B = 7 /mZ, so D is the unique subgroup of Z/nZ of index
n/m. Finally,

af = Iso(cp)Def%ZZZ()\) ,

where ¢ is an automorphism of Z/mZ. Equivalently, there exists a non-zero scalar ¢ such
that

c€ = Defy)" (A). (2)

However, again, since Z/nZ is a minimal group for SZ?/’Z 7.c,» ANy proper deflation of A
with p’-kernel is equal to zero. It follows that n/m is a power of p. So, n = mp? for some
d € Ny.

Now let 7 : Z/nZ — Z/mZ be the projection map and let o € Aut(Z/mZ) and
B € Aut(Z/nZ) such that a om = 7o 3. Identifying Aut(Z/nZ) and Aut(Z/mZ) with
(Z/nZ)* and (Z/mZ)*, respectively, we get that

()€ = Tso(a)(cf)

= Iso(«) o Def%&zz(/\)

= Defy/n, o Tso(B)(V)

— Def?/"” (A(B)X)

Z/mZ
= A(B)ct ,
where the second equality follows from Equation (2). It follows that () = A(B). In

particular, A\(3) = 1, if « is the identity, i.e., if 8 is in the kernel of the projection map
() (Z/nZ)* — (Z/mZ)*. Moreover, A\ =& o (™)}

m*
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We finally get that any simple p-bifree biset subfunctor of Sz/mz ¢, is isomorphic to
A,p

, mp®
Z/mde,(C,,’:m7d’p noo-

, for some d € Ny, where &, 4, = o (1)
d
Conversely, given m and d, set &, 4, = £ o (7%)n” . Then we have

= L) mpZy Z/mptZ
gm,d,p - eZ/mdeIan/mZ ’
SO émdp € 57/mz.C. (Z/mp?Z). Since the p-bifree biset functor generated by vadvp is equal

A, . A, .
to SZ/zlde,Cgm o’ it follows that SZ/ZLde,(Cgm . is a subfunctor of 7,z ¢, for any d € No.

Since also &, 4, is uniquely defined by m, &, and d, there exists a unique subfunctor of

SZ/mZ,Q isomorphic to SZA/’;PdZan,dp’ for each d € Ny. This proves Theorem 7.6. U

8 The functor of Brauer characters

Let k be an algebraically closed field of characteristic p. We denote by Ry(G) the
Grothendieck group of finite dimensional kG-modules with respect to short exact se-
quences. For a commutative ring R with unity, we set RR;(G) := R ®z Ri(G).

Let C be an algebraically closed field of characteristic zero. We identify CRy(G) with
the C-vector space of class functions from G,y to C. If H is another finite group and X
is a p-bifree (H, G)-biset, then kX is projective, and therefore flat, as a right kG-module.
Consequently, tensoring with kX over kG induces a well-defined group homomorphism

Ri(X) := kX ®yc — : Rp(G) — Ri(H),
and a C-linear map
CRy(X) : CR(G) — CRy(H).
This endows CRy(—) with a structure of p-bifree biset functor over C.

8.1 Remark Note that the restrictions of the functors CR; and CR¢ to the full subcat-
egory of p/-groups are equal via the identifications above. Also, for a positive p’-integer m
and a primitive character { : Z/mZ — C*, the restriction of the simple functor Sz 7 c ¢
is simple. Therefore, one has equalities

CRy, =CRc = @ Szjmz.c,
(m,€)

of p-bifree biset functors on the full subcategory of p’-groups, where (m, £) runs through the
set of pairs consisting of a positive p/-integer m and a primitive character £ : (Z/mZ)* —
C*.
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In this section, we examine the Brauer character ring CRy as a p-bifree biset functor.
We classify its composition factors explicitly and describe its relationship with the complex
character ring functor CRc. The main result is a short exact sequence of p-bifree biset
functors, which reveals how the modular and ordinary character theories fit together within
this categorical framework.

8.2 Remark Recall that one has isomorphisms CRy(—) = CProj(—) = S; 1 ,¢ of simple
diagonal p-permutation functors over C, see [BY20, Theorem 5.18] and [BY25, Section 6].

We start by showing that the functor CRy, is semisimple. The proof presented is also
suggested by the anonymous referee, simplifying our previous more involved proof.

8.3 Theorem CRy is a semisimple p-bifree biset functor.

Proof (Referee) Let G be a finite group. Let resg : CRc(G) — CRy(G) denote the
restriction map sending f € CRc(G) to its restriction to G,y. Let prog : CRi(G) —
CRc(G) denote the extension map, sending f € CRy(G) to the map equal to f on Gy
and to 0 on G\ Gy. Then the composition resg o prog is the identity map on CRy(G).
Let H also be a finite group and U a p-bifree (H, G)-biset. Note that if h € H, g € G
and u € U are such that hu = ug, then h € Hy if and only if g € G)y. Indeed, if n is the
order of h, then h"u = u = ug™. So, g" is in the right stabilizer of u which is a p’-group.
If h € Hy, then n is coprime to p and so g € Gpy. A similar argument shows that if
g € Gy, then h € H,y. It follows from this observation and from [Bc10, Lemma 7.1.3] that
if f € CRi(G), then Uf € CRc(H). Moreover, prog(U f) = Uprog(f). This implies that
the maps prog form a morphism of p-bifree biset functors pro : CRy — CR¢. Similarly, the
maps resg form a morphism of p-bifree biset functors res : CRc — CRj. The composition
res o pro is equal to the identity of CRy. The result follows since the functor CR¢ is
semisimple by Theorem 7.8. U

8.4 Corollary One has

~Y A7
CRy, = @ SZ/S@Z,(Q
(m,€)

where (m, ) runs through a set of pairs consisting of a positive p’-number m and a
primitive character & of (Z/mZ)*.

Proof (Referee) By Corollary 7.7 and by the proof of Theorem 8.3, composition factors
of CRy, are of the form SZA/’;Z,sm,n,p where m is a positive integer and £ is a primitive
character of (Z/mZ)*. Such a functor is a direct summand of CRy, if and only if the map
&mon,p vanishes on p-singular elements, i.e., if and only if m is coprime to p and n = 0.

The result follows. U

We now present an alternative proof of Corollary 8.4. We start with the description
of the restriction kernels.
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8.5 Proposition Let G be a finite group.

(i) One has CRy(G) = 0 unless G is a cyclic p'-group.

(i) Let G = Z/mZ be a cyclic p’-group. Then the CAut(G)-module CRy(G) is equal
to the direct sum of all primitive CAut(G)-modules.

Proof (i) Let x € CRk(G) be a non-zero element and let g € G with x(g) # 0. Then g
is a p’-element and Res%x # 0. This shows that x € CRy(G) and therefore, CR(G) =0
if G is not a cyclic p’-group.

(ii) Let G = Z/mZ be a cyclic p’-group. Since G is a p’-group, we may identify CRy(G)
with CRc(G), and by Lemma 10.1, CRy(G) with CRc(G). By Remark 7.1, one has

CRW(G) = [ P Scc.(G) | @ B Suc,(G)
¢ (H.n):|H|<|C]

where £ runs over primitive characters & : (Z/mZ)* — C* and where (H,n) runs
over a pair of cyclic p’-group H = Z/nZ with |H| < |G| and a primitive character
n : (Z/nZ)* — C*. Tt is easy to see that the space ©¢Sgc.(G) = ©¢C¢ is con-
tained in CRy(G). Conversely, let + € CRy(G) be a non-zero element and assume that
T ¢ ®¢Sa,c (G). Let H be a group of minimal order with the property that for some 7,
the (H,n)-coordinate zp, € Suc,(G) is not zero. Then |H| < |G|, and zp, € CRi(G).
Since S HK, 1s simple, the subfunctor of Sy, generated by xp, must be equal to Sy . It
follows that C, = Sy ¢, (H) is equal to CBAP(H,G) o xp,. In particular, z, is not in
the restriction kernel CRy(G), a contradiction. This completes the proof. U

An alternative proof of Corollary 8.4: By Theorem 8.3 and Proposition 10.4, for any
finite group G and any y € CRi(G), there exist ¥’ € CRi(G) and a € I satisfying the
equality

x=x+tax.

It follows from Theorem 10.2 that the multiplicity of a simple p-bifree biset functor 52’{'}

in CRy, as a composition factor is equal to that of the CAut(H )-module V in CRy(H )
By Proposition 8.5, the restriction kernel is zero unless H is a cyclic p’-group. Hence

the multiplicity of Sﬁ}’@ in CRy, is equal to 0 if H is not a cyclic p’-group. Furthermore, if

H is a cyclic p’-group, by Proposition 8.5(ii), the multiplicity of S§’€ in CRy, is non-zero
if and only if V is primitive, in which case it is equal to 1. U

8.6 Remark By Corollaries 8.4 and 7.7, we obtain a short exact sequence

0— @SZA/’ZZ’Q —+CRc — CR;, — 0
(m,)

of p-bifree biset functors, where (m, §) runs through the set of pairs consisting of a positive
integer m divisible by p and a p-primitive character £ of (Z/mZ)*.
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9 Simple biset functors associated with B-groups

In this section, we analyze how certain classical simple biset functors behave under restric-
tion to the p-bifree biset category. Our focus is on the simple functors Sk ¢ where K is
a B-group. As special cases we consider the functors Sc,«c,,c and Sc,xc,,c, for a prime
number ¢ with ¢ # p, whose evaluations are closely related to the structure of the Dade
group (see [Bcl0, Chapters 11-12]). It turns out that both functors decompose as direct
sums of simple p-bifree biset functors indexed by specific families of p-groups.

9.1 Remark Let K be a B-group. Let ex and jx be biset subfunctors of the Burn51de
ring functor introduced in [Bcl0, Section 5], similar to the functors eK and J
Section 4. By the proof of [Bcl0, Theorem 5.5.4], the functor Sk ¢ is isomorphic as blset
functors to the quotient ex /jx. We identify Sk ¢ as a subquotient of the Burnside functor
via that isomorphism.

The following theorem, suggested by an anonymous referee, simultaneously generalizes
the two special cases presented later in this section (see Parts (b) and (c) of Corollary 9.3
below). Our original approach to these cases, consistent with the previous sections, uses
restriction kernels. We outline this approach at the end of the section.

9.2 Theorem (Referee) Let K be a B-group. Then the p-bifree biset functor S c is
semisimple. More precisely,

~ A,
SK’C = @ SHfé
H

where H runs over a set of isomorphism classes of BAP-groups with the property 3(H)

K.

12

Proof Let Sﬁ’{'} be a simple subquotient of Sk c. Then Sﬁ’v is a simple subquotient of

CB as a p-bifree biset functor, so by Corollary 4.9, H is a B®P-group and V is the trivial
module C.

Now Sk c = ex/jk, and for a finite group G, the space ex(G) has a basis consisting of
the idempotents eg*;, for X < G such that X — K, i.e., B(X) — K, since K is a B-group.
The space jx(G) has a basis consisting of the idempotents e§ such that 8(X) — K but
B(X) 2 K.

Since SHV is a subquotient of Sk c, we have that 5HS§’p( H)y=Cisa subquotient
of 1Sk c(H), hence e8Sk c(H) # 0. So there exists a Subgroup X of H with éHell =
ell € ex(H) — jix(H). This implies 8(X) = K. Since éell # 0, we have X = H, so
B(H) =K.

Now efl’p < eg, and eﬁ’p £ jk. Let F be a subfunctor of eﬁ’p , not contained in jg.

. A
Then there exists a group G and a subgroup X of G such that ¢§ € F(G) < e?(G),

but e§ ¢ jx(G). Since Res§(e$) is a non-zero multiple of 5, and since Ind§(e%) is a
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non-zero multiple of e§, we can assume that X = G. Since €% € ex(G) — jx (G), we have

€S € en?(@), and B(G) = K.

Since e € eIA{’p (G), there exists a subgroup L of G x H such that

¢6 ((G x H)/L) ef # 0,

and such that ki(L) and ko(L) are p’-groups. It follows that pi(L) = G and po(L) = H.
Moreover,

Def 11,1, (ef) # 0.

Since ko (L) is a p/-group and since H is a B~P-group, this implies ko(L) = 1. Therefore,

H = G/ki(L). But since 5(G) = B(H) = K, we have mg, (1) # 0, and then since k1 (L)

is a p/-group, we have 6,(G) = 8,(H) = H. Therefore, eﬁ’p = eé’p, and so F = efl’p.
This shows that the image of eﬁ’p in ex/jx is simple, and isomorphic to Sﬁ:g It

follows that
Syt
D Sut

H: BAP_group
BH)=K
up to iso.

is a subfunctor of Sk c. Now, since any composition factor of Sk ¢ isomorphic to Sﬁj’g is

generated by the image of eg in Sk c(H), the simple functor Sfl’fé has multiplicity one in
Sk c. This completes the proof. U

9.3 Corollary Let q # p be a prime. We have the following isomorphisms of p-bifree
biset functors.

(a) R
Sic = @ SpE.

P: cyclic p-group
up to iso.

~ A7p
Sc,xc,c = @ SpE.

P: non-cyclic p-group
up to iso.

~ Ap
Sc,x0yc = EB SCixCyxD,C:

D: cyclic p-group
up to iso.
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Proof (a) If H is a finite group, then by [Bcl0, Proposition 5.6.1], B(H) = 1 if and
only if H is cyclic. A cyclic group is a BAP-group if and only if it is a cyclic p-group.
Theorem 9.2 implies the result.

(b) If H is a finite group, then by [Bc23, Lemma 2.4], 3(H) = C, x C, if and only if
H = P x C, where P is a non-cyclic p-group and C' is a cyclic p’-group. Then 6,(H) = P.
The result follows from Theorem 9.2.

(c) If H is a finite group, then by [Bc23, Lemma 2.4], B(H) = C,; x Cy if and only if
H = @ x C, where Q is a non-cyclic g-group and C' is a cyclic ¢-group. Then C = D x E,
where D is a cyclic p-group and E is a cyclic p’-group. Then H = Q x D x E, and
dp(H) =2 Cy x Cy x D. The result follows from Theorem 9.2. U

We now give a proof of the decompositions in Corollary 9.3 via the restriction-kernel
technique. We treat the case of the functor S¢,«c,,c, the argument for Part (c) is analo-
gous.

9.4 Proposition (a) Let G be a finite group. One has Sc, ¢, c(G) = {0} unless G is a
non-cyclic p-group.
(b) Let G be a non-cyclic p-group. Then Sc,xc,,c(G) is one-dimensional generated by
the image of eg in Sc,xc,,c(G).
Proof First note that for any p-bifree biset functor S and finite group G, one has S(G) C
€GS(G). Indeed, one has S(G) = eGS(G) @ (1—€5)S(G) and (1—¢5)S(G)NS(G) = {0}.
Now note that by [Bc23, Corollary 3.6], if égSchcmc(G) is non-zero, then G is p-
elementary. Furthermore, by the proof of [Bc10, Theorem 5.5.4], égSochp,(c(G) is gener-

ated by the image eg in Scpxcp,@(G) of eg if G is not cyclic and is equal to zero if G is
cyclic.

Suppose that G = P x C' is a non-cyclic p-elementary group where P = Op(G). Then
eG =eb x e§. Also if N <G is of p-order, then G/N = P x C/N and

Defg/Neg =eb x Defg/Neg.
Since C' is a cyclic group, mc,c # 0 by [Bcl0, Proposition 5.6.1] and hence
c/C
Defg/ceg = cheg X ec?c #0.

This shows that Sc,xc,,c(G) = {0} unless C' = 1. On the other hand if C' = 1, then

Sc,xc,c(G) = égSCchmC(G) is one-dimensional generated by %. In fact, in this case G
is a p-group and Resgeg = 0 for any proper subgroup H < G by [Bcl0, Theorem 5.2.4].

This proves both parts. U

9.5 Proposition Let G be a finite group. Then for any x € S¢,xc,,c(G), there exists
2’ € S, xc,c(G) and a € Ig such that x = 2’ + a - x.
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Proof Let x € S¢,xc,,c(G). By the proof of Proposition 9.4, we have eGSchc c(G) =
{0} if G is not a non-cyclic p-group. In this case, we have 2’ =0 and o =1 — eg If Gis
a non-cyclic p-group, then again by the proof of Proposition 9.4, we have Scpxcp (G) =
eGSCchp,(C(G). Thus, in this case, we choose x’ = eg czanda=1-— g U

These two results allow us to determine the full decomposition of S¢, ¢, c as a p-bifree
biset functor. It splits as a direct sum of simple functors indexed by non-cyclic p-groups,

each occurring with multiplicity one.

9.6 Theorem One has an isomorphism

~Y A7
SCP XCPr(C = @ SP,((Z:)

P:non-cyclic p-group
of p-bifree biset functors.

Proof By Propositions 9.4 and 9.5 and Theorem 10.2, the composition factors of S¢,xc,,c

are exactly the functors S5 P.C 2 where P is a non-cyclic p-group, each with multiplicity one.
We will show that each of these functors is a subfunctor.

Let F' be a p-bifree biset subfunctor of S := S¢, «c,,c and let G' be a minimal group
of F. Then we have {0} # F(G) C S(G) which by Proposition 9.4 implies that G is a
non-cyclic p-group and that F(G) is one-dimensional generated by eg. Conversely, if G is
a non-cyclic p-group, then the subfunctor generated by S(G) has a minimal group G.

For a non-cyclic p-group P, let Fp be the subfunctor of S generated by 61;. Then Fp
has a minimal group P. Moreover, if P’ is a p-group such that Fp(P’) # 0, then P is
isomorphic to a subgroup of P’. Indeed, if X is a transitive p-bifree (P’, P)-biset such that
X oeb #0, then pa(X) = P and k2(X) = 1 = k1 (X).

We claim that Fp is a simple p-bifree biset functor isomorphic to Sﬁ;{:’ . To prove the
claim, it suffices to prove that if P’ is a non-cyclic p-group not isomorphic to P, then
Fp: & Fp. Indeed, if M is a proper nonzero subfunctor of Fp, then the minimal group
of M is a non-cyclic p-group P’ non-isomorphic to P. But then Fpr C M, since M(P’)

is one dimensonal generated by egf. Now, as above, Fp(P') = 0 if P is not isomorphic
to a subgroup of P’. Also, if P is isomorphic to a subgroup of P’, then Fp(P’) is one-
dimensional generated by Indp eb p, or by egl. In both cases, it follows that if P 2% P/,
then eb, Fp(P') = 0. But b, Fpi(P') = Fp/(P') # 0. Thus, Fpr ¢ Fp and hence Fp
is simple. Since Fp(P) is one-dimensional and generated by % which is invariant under
any automorphism of P, we have Fp(P) = C. Therefore, Fp = Sﬁ(g . This proves the
theorem. U

10 Appendix

Let R be a commutative ring and let K be a field.
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10.1 Lemma Let F' be a (p-bifree) biset functor over R and G a finite group. Let Sec(Q)
be the set of all proper subquotients of G. Then we have

FG = (1 ke(F(e): F(G)— F(H)).

HeSec(G)
a€RBA(H,G)

Proof Denote the right hand side of the above equality by F(G). Clearly F(G) C E (G).

For the reverse inclusion, let 7" be a group of order less than |G| and let U < T x G.

Also let x € F(G). It is sufficient to prove that

T

(%) e
Write T %G
X
( i ) = IndglanTg/KIso(f)Defg/LResg
with the usual choices of letters. Thus
TxG

( i )x = (Inngnfg/KIso(f)Defg/LResg)-w = Indlfglnfg/KIso(f)(Defg/LResg-x) =0.
Here DefQ/LResg -x = 0 since z € F(G). U

The following theorem is stated in [BCK] for Green biset functors. But one can easily
check that it is also valid for p-bifree biset functors. We include the proof for the sake of
self-containment.

10.2 Theorem [BCK, Theorem 2.5] Let F' be a p-bifree biset functor over a field k and
let G be a finite group. Suppose that dimy F(G) < oo, and that for every Eg-submodule
M C F(QG), one has

M= (MnEG))+ IgM. (%)

Then, for every simple k[Out(G)]-module V', the following numbers are equal:
1. Multiplicity [F : Sq,v] of Sqv as a composition factor of F'.
2. Multiplicity of V' as a composition factor of the Eg-module F(G).
3. Multiplicity of V' as a composition factor of the k[Out(G)]-module F(G).

Proof The equality of the first two numbers are well-known. We prove the equality of
the last two numbers. Since dimy F'(G) < oo, there exists an Eg-composition series

0O=MyCM, C---CM,_1 CM,=FG)
of F(G). Set K := F(G), and consider the induced series

0=(MyNK)C (MiNK)C - C(Mp1NK)C (M,NK)=K
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of Eg-submodules of K. Let V be a simple k[Out(G)]-module, and let i € {1,...,n}.
We claim that if M;/M; 1 = V, then (M; N K)/(M;—1 N K) = V. This implies that
[F(G): V] <[K :V]. But clearly, [K : V] < [F(G) : V], and we obtain equality.

To prove the claim, observe that

M;,NK M,NK Q(MimK)“‘Mi—lC M;

= o~ =2V.
M, NnK (M;nK)NM;_ M; 4 - M4

It therefore suffices to show that the left-hand side is nonzero. Assume by contradiction
that M; " K = M;_1 N K. Then,

M; = (M;WK) +1IgM; € (M; N K) + M;_1 = M;_1,

contradicting M;/M;_1 =V # 0. Here, we used the assumption that V' is annihilated by
I, and the hypothesis of the theorem. U

10.3 Remark Let F' be a p-bifree biset functor over K and let G be a finite group. It is
straightforward to prove that the condition in the above theorem is equivalent to any of
the following conditions. We include the proof of the equivalences from [BCK, Proposition
2.6] for completeness.

(1) For every subfunctor M of F' one has M (G) = M(G) + TM(G).
(2) For every x € F(G), there exist 2’ € F(G) and a € I with x =2’ + « - .

Proof of equivalences: Suppose Condition (1) holds and let x € F(G). Set M := (z) to
be the subfunctor of F' generated by x. Then, by definition, M (G) = I - =, hence (2)
holds.

Next suppose (2) holds and let M be an Eg-submodule of F(G). Also let x € M.
Writing x as z = ' + ax, by (2), we see that ' = z—ax € M. Hence M C (M NE(G))+
IgM. The reverse inclusion is trivial. Hence the condition (x) of Theorem 10.2 holds.

Finally, suppose (x) holds and let M be a subfunctor of F. Then it is easy to see that
M(G) is an Eg-submodule of F(G), that M(G) = M(G) N F(G) and that IoM(G) C
JM(G). Hence (1) holds.

10.4 Proposition Let F' be a semisimple p-bifree biset functor. For any finite group G,
we have

F(G) = E(G) @ TF(G).

In particular, for every x € F(G), there exist ' € F(G) and « € I satisfying

x:x'—i—a-x.
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Proof Let nyy denote the multiplicity of the simple p-bifree biset functor Sﬁ’{'} in F.
Then evaluating at G, we have

F(G) = <@ na,wSéjé’V(G)> ® D nH,VSﬁ’{;(G)
w

(H,V):|H|<|G|

Using arguments similar to the proof of Proposition 8.5, one can show that the first
summand is equal to F(G) and that the second summand is equal to J F(G). This proves
the first assertion. The second assertion follows from the above remark. U

Acknowledgements

We thank an anonymous referee for many helpful suggestions and corrections, for
communicating alternative proofs of Theorems 7.6, 7.8, 8.3 and Corollary 8.4, and for
providing Theorem 9.2, which generalizes parts (b) and (c) of Corollary 9.3.

References

[Ba08] L. BARKER Rhetorical biset functors, rational p-biset functors and their semisim-
plicity in characteristic zero. J. Algebra 319 (2008), 3810-3853.

[BHabil] R. Borrie: Mackey functors and related structures in representation theory
and number theory. Habilitation-Thesis, Universitt Augsburg 1995.

[BC18] R. BoLtJE, O. CosKUN: Fibered biset functors. Adv. Math. 339 (2018), 540-598.

[BCK] R. Borrig, O. CoskUN, ¢. KARAGUZEL: The functor of trivial-source modules.
preprint.

[Be23] S. Bouc: Some simple biset functors. J. Group Theory 26 (2023), 1-27.

c . Bouc: Idempotents of double Burnside algebras, L-enriched bisets, and decom-
Bclg8] S. B Id f double Burnside algebras, L-enriched bi dd
position of p-biset functors. J. Algebra 504 (2018), 129-175.

[Bcl0] S. Bouc: Biset functors for finite groups. Lecture Notes in Mathematics, 1990.
Springer-Verlag, Berlin, 2010.

[Bc07] S. Bouc: The functor of units of Burnside rings for p-groups. Comment. Math.
Helv. 82 (2007), 583-615.

[Bc06] S. Bouc: The Dade group of a p-group. Invent. Math. 164 (2006), 189-231.
[Bc00] S. Bouc: Burnside rings. In Handbook of Algebra (2) (2000), 739-804.

[Bc96] S. Bouc: Foncteurs d’ensembles munis d’une double action. J. Algebra 183(3)
1996, 664-736.

30



[BST13] S. Bouc, R. STANCU, J. THEVENAZ: Simple biset functors and double Burnside
ring. J. Pure Appl. Algebra 271 (2013), 546-566.

[BY20] S. Bouc, D. YiLMAz: Diagonal p-permutation functors. J. Algebra 556 (2020),
1036-1056.

[BY22] S. Bouc, D. YiLMAZ: Diagonal p-permutation functors, semisimplicity, and func-
torial equivalence of blocks. Adv. Math., 411(part A): Paper No. 108799, 54, 2022.

[BY25] S. Bouc, D. Yiumaz: Diagonal p-permutation functors in characteristic p.
preprint arXiv:2412.04221.

[L18a] M. LINCKELMANN: The block theory of finite group algebras. Vol. I. London
Mathematical Society Student Texts, 91. Cambridge University Press, Cambridge,
2018.

[W00] P. WEBB: A guide to Mackey functors. In Handbook of Algebra (2) (2000), 805
836.

31



