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Abstract

We give sufficient conditions on p-blocks of p-nilpotent groups over ), to be splendidly
Rickard equivalent and p-permutation equivalent to their Brauer correspondents. The paper
also contains Galois descent results on p-permutation modules and p-permutation equivalences
that hold for arbitrary groups.

1 Introduction

In [KL18], Kessar and Linckelmann proved that Broué’s Abelian Defect Group Conjecture (origi-
nally stated over splitting fields) holds for blocks with cyclic defect groups over arbitrary fields of
characteristic p > 0, in particular over the prime field IF,. More precisely, if G is a finite group and b
is a block idempotent of F,G with cyclic defect group D, then there exists a splendid Rickard equiv-
alence between F,Gb and its Brauer correspondent block algebra F,HBrp(b), where H = Ng(D)
and Brp: (F,G)? — F,Cq(D) is the Brauer homomorphism, an F,-algebra homomorphism which
is given by truncation.

In this paper we investigate if a similar phenomenon holds for blocks of p-nilpotent groups. In
this case, a positive answer over a splitting field F of characteristic p > 0 of G was given by Rickard,
see [R96], even without the assumption of abelian defect groups. There, he introduced and used
the notion of an endosplit p-permutation resolution in order to construct such splendid Rickard
equivalences. We have two main results. The first gives sufficient conditions under which there
exists such a splendid Rickard equivalence between Brauer corresponding blocks of a p-nilpotent
group over F,,. The second gives sufficient conditions under which the weaker form of equivalence,
namely a p-permutation equivalence, exists over F,,.

So let G be a p-nilpotent group, i.e., a finite group whose largest normal p’-subgroup N is a
complement to a (and then each) Sylow p-subgroup of G. Moreover, let F' be a finite splitting
field of G and its subgroups of characteristic p > 0. Let b be a block idempotent of F,G and

*MR Subject Classification: 20C20, 19A22. Keywords: p-permutation modules, trivial source modules,
splendid Rickard equivalence, p-permutation equivalence, p-nilpotent groups, Galois descent.



let b be a block idempotent of FG which occurs in a primitive decomposition of b in Z (FQ).
Then b is contained in Z(FN). Let e be a block idempotent of FN that occurs in the primitive
decomposition of b in Z(FN). Adjoining the coefficients of e and of b to [F,,, one obtains subfields
F,[b] CF,le] C F, since b is a sum of G-conjugates of e.

Theorem A Let G be a p-nilpotent group and let b be a block idempotent of F,G. Suppose that
p is odd or b has abelian defect groups, and suppose that, with the above notation, F,[b] = Fple].
Then there exists a splendid Rickard equivalence between the block algebra JFPGE and its Brauer
correspondent block algebra.

Theorem A follows from the more precise statement in Proposition 5.8 and Remark 5.9. The
proof uses Rickard’s original approach in [R96] involving endosplit p-permutation resolutions, a
descent result in [KL18], and the classification of endopermutation modules over p-groups, see
[T07] for a survey article on the latter.

There are weaker forms of equivalences between blocks than splendid Rickard equivalences, as
for instance p-permutation equivalences which were introduced in [BX08] and extended in [L09]
and [BP20]. See Section 4 for a definition.

Theorem B Let G be a p-nilpotent group with abelian Sylow p-subgroup and let b be a block
idempotent of F,G. Then there exists a p-permutation equivalence between F,Gb and its Brauer
correspondent block algebra.

Theorem B follows from the more precise statement in Corollary 5.15. The proof uses again
Rickard’s construction and Galois descent arguments for the representation ring of trivial source
modules developed in this paper, see Theorem 2.6 and Lemma 4.3. The reason that we only obtain
a p-permutation equivalence and not a splendid Rickard equivalence in Theorem B, is that we
don’t have a descent result analogous to Lemma 4.3 for splendid Rickard equivalences and that the
descent result from [KL18] cannot be applied without the assumption that F,[b] = F,[e], see also
Remark 5.16. Because Theorem 2.6 and Lemma 4.3 are of independent interest we include them
in the introduction as Theorems C and D. For these two results, G and H can be arbitrary finite
groups and we assume that F' is a splitting field for G and H and their subgroups.

Theorem C Let F' be a subfield of F and A := Gal(F/F'). Then, scalar extension from F' to
F induces an isomorphism Tr/(G) — Tr(G)> from the trivial source ring of F'G to the A-fired
points of Tr(G).

Theorem D Let b and ¢ be block idempotents of FG and FH, respectively. Let b and ¢ denote
the block idempotents of F,G and Fp,H associated to b and c, respectively, as in Proposition 4.1(a).
Moreover, let w € TA(FGb, FHe) be a p-permutation equivalence between FGb and FHe. Suppose
that stabp(w) = stabrp(b) = stabr(c). Then there exists a p-permutation equivalence between F,Gb
and F,He.

The paper is arranged as follows. In Section 2 we prove Theorem 2.6. The definition and basic
properties of endosplit p-permutation resolutions are given in Section 3. In Section 4 we collect
basic results on the Galois group action on blocks and prove Lemma 4.3. Finally, in Section 5 we
prove Theorems A and B.

Our notation is standard. For any rings R and S we denote by pmod (resp. gmodg) the
categories of finitely generated left R-modules (resp. (R, S)-bimodules). For objects M and N in



a module category or chain complex category we write M | N to indicate that M is isomorphic
to a direct summand of N. If H and K are subgroups of a finite group G, then ¢ € G/H
(resp. ¢ € H \ G/K) indicates that g runs through a set of representatives of the given cosets
(resp. double cosets).

Acknowledgement The authors are most grateful to the referee for her/his thorough reading and
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2 Galois descent of p-permutation modules

Throughout this paper, G and H denote finite groups and F' a finite field of characteristic p which
is a splitting field for all subgroups of H and G. Moreover, I' := Gal(F/F,) denotes the Galois
group of F over F,. For any subfield F’ C F one has functors

—F: FGmod — F/Gmod and F®F/ —: F/Gmod — FGmod

defined by restriction and extension of scalars.

2.1 Proposition Let Q be a p-subgroup of G and let F’' be a subfield of F. If M € p/gmod
is relatively Q-projective then F ®p+ M € pgmod is relatively Q-projective. If N € pgmod is
relatively Q-projective then Np: € prgmod is relatively Q-projective.

Proof This follows immediately from the fact that restriction and extension of scalars commute
with Indg. U

For each o € T" one has a functor

o

—: pgmod — pgmod (1)

which assigns to M € pgmod the F'G-module “M whose underlying abelian group is equal to M
and whose FG-module structure is given by restriction along the ring isomorphism o¢~!: FG —
FG, deG 0gg > dec o7 (ay)g. For any FG-module homomorphism f one has °f = f.
Similarly one defines the functor °—: pgmodrpy — pgmodrg. For any M € pgmod we set
stabp(M):={oc eT'| °M = M}.
We recall from [L18a, Definition 5.4.10] the definition of the Brauer construction functor
—(P): rgmod — F[NG(p)/p]mod s
for any p-subgroup P of GG, and we denote by
—°:=Homp(—, F): pemod — pgmod

the functor of taking F-duals. The above functors extend to functors between appropriate cate-
gories of (co-)chain complexes and they have the following properties.

2.2 Lemma Let G, H and K be finite groups. Further, let M and N be FG-modules, U an
(FG,FH)-bimodule, V an (FH,FK)-bimodule, . < G a subgroup, P < G a p-subgroup and
o,7 € I'. Moreover, let F' C F be a subfield and set A := Gal(F/F'). Then one has

(a) °°M = "(°M), “(M @& N) = M & °N, and (M ®p N) = °M @p °N.

(b) Res%(°M) = “ (Res¥ M) and Tnd$ ("M) = (IndfM).

(c) ("M)° = 7(M°), “(U@pn V)= U @py °V, and ("M) (P) = 7 ((M)(P)).

(d) F@p Mpr =@, cn M.



Proof The proofs of (a)—(c) are straightforward. For a proof of Part (d) see [KL18, Proposition
6.3]. U

2.3 Corollary Let F’' be a subfield of F. An indecomposable F'G-module M and the indecom-
posable direct summands of F @p/g M have the same vertices. Similarly, an indecomposable
FG-module N and the indecomposable direct summands of Np+ have the same vertices.

Proof This follows from Lemma 2.2(d) and Proposition 2.1. The first statement also follows from
[F82, Chapter III, Lemma 4.14]. U

Feit attributes the following theorem to Brauer.

2.4 Theorem [F82, Theorem 19.3] Let F' be a finite field, A a finite dimensional F'-algebra,
K/F' a field extension, V an absolutely irreducible K ® pr A-module such that try(a) € F' for
every a € A. Then V has an A-form, i.e., there exists an absolutely irreducible A-module W such
that K @ g W 2V as K Q p» A-modules.

2.5 Corollary Let V be an irreducible FG-module and let F' := F? denote the fixed field of
A := stabp (V). Then there exists an (absolutely) irreducible F'G-module W with V 2 F Qp W.

Proof This follows from the above theorem noting that if °V =V for some o € I then o(try (g)) =
try (g) for all g € G.

Recall from [L18a, Section 5.11] that, for any field F” of characteristic p > 0, a p-permutation
F'G-module M is a direct summand of a finitely generated permutation F’G-module. Equivalently,
the restriction of M to any p-subgroup of G is a permutation module. Also equivalently, the sources
of the indecomposable direct summands of M are trivial modules. We denote the Grothendieck
group of p-permutation F’'G-modules V' with respect to split short exact sequences by T (G). It is
a commutative ring with multiplication induced by —®p —. The class of V in T (G) is denoted by
[V]. The classes of indecomposable p-permutation F’G-modules form a standard Z-basis of Tp/ (G).
If F is a field extension of F' then the ring homomorphism Tr(G) — Tg(G) of scalar extension
is an isomorphism, see [BG07, Theorem 1.9]. The Galois conjugation functors in (1) induce an
action of the group T' on Tr(G) via ring isomorphisms which stabilizes the standard basis. For
a subfield F’ of F the functors of scalar restriction and extension induce a group homomorphism
Tr(G) — Tp:/(G) and a ring homomorphism

Te(G) = Tr(G) (2)

which is injective by the Deuring-Noether Theorem and whose image is contained in the subring
Tr(G)? of A-fixed points, where A := Gal(F/F"). Note that also the abelian group Tr(G)? has
a standard Z-basis, namely the A-orbit sums of the standard basis of Tw(G). The goal of this
section is the following theorem.

2.6 Theorem Let F’ be a subfield of F and A := Gal(F/F’). Then the ring homomorphism
Tr (G) — Tr(G)? in (2) induced by scalar extension is an isomorphism, mapping the standard
basis to the standard basis.

Before proving the above theorem we need the following proposition.

2.7 Proposition Let V be an indecomposable p-permutation FG-module and let F' = F» be
the fixed field of A := stabr(V'). Then there exists a unique (up to isomorphism) indecomposable
p-permutation F'G-module W such that V = F @ W as FG-modules.



Proof Let P be a vertex of the module V. Then the Brauer construction V(P) of V is projective
indecomposable as an F[Ng(P)/P]-module and its inflation is the Green correspondent of V', see
[L18a, Theorem 5.10.5]. The quotient module S := V (P) /J (V (P)) is absolutely irreducible since
F is a splitting field. Since the Green correspondence and taking projective covers commutes with
Galois conjugation, the stabilizer of the isomorphism class of S in I' is equal to A.

By Corollary 2.5, there exists an irreducible F'[Ng(P)/P]-module T such that S & F @p: T.
Let W' be a projective indecomposable F'[N¢(P)/P]-module such that W'/ J(W') = T, and let
W € prgmod be the Green correspondent of the inflation of W’/. We will show that V & F @p W.

First we claim that the projective F[Ng(P)/P]-module F @ W' is a projective cover of S.
In fact, J(F ®p: F'[Ng(P)/P]) = F ®p: J(F'[Ng(P)/P]), see [L18a, Propositions 1.16.14 and
1.16.18], so that J(F @p W') = F @p J(W'). With this we obtain

(F R W/)/J(F R WI) = (F K Fr W/)/(F Qp J(W/)) = F Qp (W’/J(W/)) =39,

establishing the claim. Thus, F @ pr W' = V(P) as F[Ng(P)/P]-modules and also as F[Ng(P)]-
modules after inflation. Since W is the Green correspondent of W’ we have

Fep W |F®p Ind§, p(W') 2 Ind§, p)(F @p W) = Ind§, p(V(P)).

But since the modules V and V(P) are Green correspondents, the module V' is the unique in-
decomposable direct summand of Indﬁc( py(V(P)) with vertex P and has multiplicity one in

Ind%G(P)(V(P)). Now Corollary 2.3 implies F @ p» W = V| as desired. U

Proof of Theorem 2.6. Tt suffices to show that every standard basis element of Tr(G)? comes
via scalar extension from Tra (G). So let V be an indecomposable p-permutation FG-module and
set A’ := stabp([V]). Then the A-orbit sum of [V], i.e., the class of @, cn /(anar) 7V is a standard
basis element of Tr(G)» and every standard basis element is of this form. By Proposition 2.7
there exists an indecomposable p-permutation FA G-module W’ such that V & F Qpar W', By
Lemma 2.2(d), we have

EB V2F @pa ( @ W) 2 F @pant Whas) = F@pa W
cEA/(ANAY) TEAAT /A’

with W i= F2 @ pasr (W) aar)- U

3 Endosplit p-permutation resolutions

In this section, and only this section, F' can be any field of characteristic p. The following concept
is due to Rickard, see [R96, Section 7].

3.1 Definition Let M be a finitely generated FG-module. An endosplit p-permutation resolution
of M is a bounded chain complex X of p-permutation F'G-modules with homology concentrated in
degree 0 such that Hyo(X) = M and such that X ®p X° is split as chain complex of FG-modules
(with G acting diagonally and X° denoting the F-dual of X). Here, X° is again considered as a
chain complex.



3.2 Remark Let X be an endosplit p-permutation resolution of a finitely generated F'G-module
M.

(a) Every direct summand X’ of X is again an endosplit p-permutation resolution of Hy(X").

(b) We can decompose X into a direct sum X = X’ @& X" of chain complexes such that X"
is contractible and X’ has no contractible non-zero direct summand. With X, also X’ is then an
endo-split p-permutation resolution of M. If X" = 0, we say that X is contractible-free.

(c) Taking the 0-th homology induces an F-algebra isomorphism
p: EndK(meod)(X) >~ Endpg(M), (3)

where K (rgmod) denotes the homotopy category of chain complexes in pgmod, see [L18b, Propo-
sition 7.11.2]. If N | M, then the projection map onto N yields an idempotent in Endpg (M) and
hence an idempotent in End g (,.;mod)(X) via the isomorphism in (3). This idempotent lifts to an
idempotent o in Endep(pgmod)(X), where Ch(rgmod) denotes the category of chain complexes in
remod. Tt follows that the direct summand a(X) of X is an endosplit p-permutation resolution of
N. The lifted idempotent is not unique up to conjugation, but «(X) is unique up to isomorphism
and contractible direct summands. Therefore, if X is contractible-free, then «(X) is uniquely
determined by N up to isomorphism in Ch(rgmod).

(d) Suppose that M = F @ M’ for some subfield F’ C F' and some M’ € pgmod. Then,
Mpr = M'IFF'T i rrgmod and Xpr € Ch(pgmod) is an endosplit p-permutation resolution of
M'IF:F'] By Part (c), also M’ has an endosplit p-permutation resolution. Conversely, if M’ has an
endosplit p-permutation resolution X’ € Ch(pgmod) then F ® pr X’ is an endosplit p-permutation
resolution of FF @p» M’ = M.

3.3 Lemma Let Xy, Xy, Xy and Xy be endosplit p-permutation resolutions of V,U, V', U’ €
ramod, respectively, and assume that Xy and Xy are contractible-free. Suppose further that
Xv & Xy & Xy & Xy in Ch(pgmod) are endo-split p-permutation resolutions of V & U and
V' @ U’, respectively, and that V = V' in pgmod. Then U = U’ in pgmod and Xy = Xy in
Ch(FGmod).

Proof Taking 0-th homology of Xy & Xy and Xy @ Xy yields Vo U = V' & U’, and the
Krull-Schmidt Theorem implies U = U’. For the second statement let ¢: Xy & Xy — Xy @
Xy be an isomorphism in Ch(gpgmod). Then ¢(Xy) and Xy are both direct summands of
Xy @ Xy and contractible-free endo-split p-permutation resolutions of V. Therefore, by [L18b,
Proposition 7.11.2] (see also Remark 3.2(b)) they are isomorphic. U

4 Galois descent of p-permutation equivalences

Since the Galois group I' acts via F)-algebra automorphisms on the group algebra F'G' and also on
Z(FQ@), it permutes the block idempotents of FG.

4.1 Proposition [BKY20, Proposition 4.1] (a) Let b be a block idempotent of FG. Then b=
Trr(b) := X, er/stabr(v) 0 IS a block idempotent of F),G.

(b) The map b — b induces a bijection between the set of T-orbits of block idempotents of FG
and the set of block idempotents of F,G.

(c) If b is a block idempotent of FG and b := Trr(b) is the block idempotent of F,G associated
to it as in (a) then b and b have the same defect groups.



4.2 Lemma Let b be a block of FG with a defect group P and ¢ be the block of F Ng(P) which
is in Brauer correspondence with b. For any o € T', the blocks °b and °c are again in Brauer
correspondence. In particular, the stabilizers of b and ¢ in I" are the same. Moreover, the blocks
b= Trp(b) of F,G and & = Trp(c) of F,Ng(P) are Brauer correspondents.

Proof The first assertion follows immediately from the fact that the action of I" and the Brauer
map Brp commute. We have o € stabp(b) <= o(b) = b <= Brp(o(b)) = Brp(h) <=

o(c) = ¢ <= o € stabp(c). The last statement follows easily from the additivity of the Brauer
map. U

Let F’ be a field of characteristic p and let b and ¢ be central idempotents of F'G and F'H,
respectively. As usual we identify F'[G x H|] = F'G ®p F'H as F-algebras and we identify
(F'Gb, F' He)-bimodules with left F'[G x H](b® c¢*)-modules, where ¢* is defined by applying the
F'-linear extension of h ++ h™! to c. We write T®(F'Gb, F'He) for the subgroup of Tr/ (G x H)
spanned by indecomposable F'[G x H](b® c*)-modules whose vertices are twisted diagonal, i.e., of
the form {(¢(y),vy) | y € Q} for some isomorphism ¢: @ — P between p-subgroups P and Q of G
and H, respectively. Recall from [BP20] that a p-permutation equivalence between F'Gb and F'He
is an element w € T2 (F'Gb, F'Hc) such that w -y w® = [F'Gb] in T2 (F'Gb, F'Gb) and w° -¢ w =
[F'Hc] in TA(F'He, F'He). Here, - is induced by — @ gy —, and w® € T/ (H x G) is given by
taking the F’-dual of w. Note that if F’ = F then stabr(w) < stabp(b) and stabr(w) < stabr(c).

4.3 Lemma Let b and ¢ be block idempotents of FG and F H, respectively. Let b and ¢ denote
the block idempotents of F,G and F,H associated to b and c, respectively, as in Proposition 4.1(a).
Moreover, let w € T*(FGb, FHc) be a p-permutation equivalence between FGb and F He. Suppose
that we have A := stabr(w) = stabr(b) = stabr(c). Then there exists a p-permutation equivalence
between FPGZ; and F,He.

Proof For any o € T, the Galois conjugate “w is a p-permutation equivalence between F'G °b
and FH °c. Hence the sum ) __p. INCES TA(FGb, FHE) is a p-permutation equivalence between
DByer/a FG = FGb and @,/ FH % = FHE. Note that the sum >,/ n W € Tr(G x H)
is fixed under I'. By Theorem 2.6, there exists @ € Tk, (G, H) such that }°, cp /o w = F @, ©. It

follows that & is a p-permutation equivalence between FPGIN) and F,He. U

5 p-nilpotent groups

Throughout this section we assume that G is a p-nilpotent group. Thus, G has a normal p'-
subgroup N such that G/N is a p-group. We fix a block idempotent b of F'G and denote by
b := Trp(b) the corresponding block idempotent of F, G, see Proposition 4.1(a). Moreover, we fix
a block idempotent e of F'N such that be 7 0. Then b =3_ . ¢ %, where S := stabg(e), and the
idempotent e is also a block idempotent of F'S. Let @) be a Sylow p-subgroup of S. Then @ is a
defect group of the block idempotents e of F'S, b of FG, and b of F,G. Finally, set € := Trr(e), the
block idempotent of F, N determined by e and set S := stabg(€). Then S < S and b = ZG/S‘ %e.

The group I x G acts on the block idempotents of FN. Set X := stabry(e). Since stabg(e) =
Swehave ko(X) :={g€ G| (1l,9) € X} =S. Similarly, k1 (X) := {oc € T'| (0,1) € X} = stabr(e).
Next we determine the images of X under the projection maps p;: I'x G =T and po: I'x G — G.

5.1 Lemma One has po(X) = S and S < S.



Proof Let g € pa(X). There exists o € T such that (©9)% = e. Therefore we have
¢ = Trp(e) = Trp((99%) = Trp( (%)) = Trp(%) = Trp(e) = %.

This shows that g € stabg(€) = S and hence that py(X) < S.
Now let § € S. Then ) )
Trp(ge) = S(Tl”p(e)) =%=c.
Since the blocks e and ‘% have the same Galois trace, they must be I'-conjugate, and therefore

5 € p2(X). This proves the first statement. The second statement holds, since k2(X) is normal in
p2(X) in general, see [Bcl0, p. 24].

Next, set e’ := 3 :c5/g %. Then ¢’ is a block idempotent of F'S and b = > gec/s %'.

5.2 Lemma One has stabr(¢’) = stabp(b) = p(X). Moreover, S/ 2 stabr (b)/stabr(e) is cyclic.

Proof We have stabr(e’) < stabr(b) since b =} /s %’. Next, let 0 € p;(X). Then there
exists 8y € S such that (o, 50) € X, and
=Y o= (W)=Y () =7,
5€5/8 5€5/8 5eS/8
where the last equation holds, because S < S. This shows that ¢ € stabp(e’) and hence p; (X) <
stabr(e’). Finally, let o € stabr(b). Then °b = b implies that (3 cq/s %) = Y yca/s %
Therefore there exists g € G such that (%9 = e, i.e., 0 € p;(X). The proof of the first statement

is now complete. The second statement follows from the general isomorphism p;(X)/ki(X) =
p2(X)/k2(X), see [Bel0, p. 24], and since T is cyclic.

5.3 Lemma One has Trp(e’) = é. In particular, é is a block idempotent of F,,S.

Proof By Lemma 5.2 and since k1 (X) = stabr(e), we have

)= Y e= 3 Y To= % S e

o€l'/p1(X) o€l /p1(X) 5e3/S o€l /p1(X) T€p1(X)/k1(X)
= Z %e=Trr(e) =¢,
o€l /k1(X)

as desired. The third equation holds, since the classes of s and 7 correspond under the isomorphism
p2(X)/ka(X) = p1(X)/k1(X) if and only if (7,8) € X, see [Bcl0, p. 24]. U

Let V' denote the unique (up to isomorphism) simple F Ne-module. By Theorem 2.6 and since
stabp (V) = stabr(e) = k1(X), there exists a unique simple F, N-module V' such that

P Vv=repV. (4)
c€l/k1(X)

Since € acts as identity on the above direct sum, Visa simple F, Né-module. Since V is absolutely
irreducible, it extends to a (unique up to isomorphism) simple F'Se-module which we denote again
by V. Similarly, each °V can be viewed as F'S-module, so that the left hand side in (4) has an
F Sé-module structure and is [-invariant. Again, by Theorem 2.6, the left hand side in (4) regarded
as F'S-module has an IF,-form W € g, semod. Restriction from S to N and the Deuring-Noether

Theorem then imply that Res3 (W) 22 V. Thus, V extends to a simple FSé&-module and (4) is an
isomorphism of F'Sé-modules.



5.4 Proposition The IF,Sé-module V extends to an IFpS’é—module.

Proof By Fong’s first reduction theorem, W := IndgV is the unique simple FSe/-module (up
to isomorphism) and stabp(W) = stabr(e’) = p1(X). By Theorem 2.6, there exists a simple
FyS-module W such that @ ,cr/,, (x) ‘W = F ®F, W. Restriction to S implies

Resg(F ®F, W) Resg( EB W) = @ U(ResgI/V) = GB U(ResgIndgV)

ocel'/p1(X) o€l /p1(X) o€l /p1(X)
= P (P = B Vv=reV,
o€l/pi(X)  3eS5/S o€l /k1(X)

since 69565/5 o ®T€p1(X)/k1(X) "V, which follows from the argument at the end of the proof
of the previous proposition. This shows that Resgw =V and the result follows. U

5.5 Remark Proposition 5.4 extends the results of Michler [M73, Theorem 3.7] (z=1 in part(e)).

Now set H := N¢(Q), which is again a p-nilpotent group, and set M := O, (H), the largest
normal p’-subgroup of H. Then

M=HNN=Cn Q).

Let ¢ denote the block idempotent of FFH which is in Brauer correspondence with b. Then, by
Lemmas 4.2 and 5.2, stabr(c) = stabr(b) = p1(X) and ¢ := Trr(c) is the Brauer correspondent of
b.

Further, let f denote the block idempotent of F'M whose irreducible module is the Glaubermann
correspondent of the @-stable irreducible module V' € gpymod. Then f is QM = QCn(Q) =
Ns(Q) = Ng(Q) NS = HN S =: T-stable and hence it remains a block idempotent of FT. By
[A76], the block idempotents e of F'S and f of FT are Brauer correspondents.

5.6 Lemma One has ¢ = Tr (f) and staby (f) = T.

Proof Since the block idempotents b and ¢ are Brauer correspondents, we have

¢ = Brg(b) = Brg(Tr§ (e) = Brg ( z Tr?2m ms( “e))

z€Q\G/S
= Z BrQ(Trgmms(me))z Z Brg(%).
z€Q\G/S z€Q\G

Q<’s

The condition @ < *S implies that z_lQ < S and hence x_lQ = *Q for some s € S since Q is a
Sylow p-subgroup of S. This means that s € Ng(Q) and so z € Ng(Q)S. Therefore the above
sum can be written as

c= Z Brg(%) = Z "Brg(e) = Trg(f) )

zeNG(Q)/(Na(Q)NS) z€H/T

since f = Brg(e). This proves the first assertion. The group stabg (f) has the group @ as a Sylow
p-subgroup, since @ is a defect group of the bock ¢. This shows that staby (f) = QM = T, as
desired. U



Let f :=Trp(f), T := stabg (f), f/ := Tr;(f) and Y := stabry g (f). Since the blocks e and f
are Brauer correspondents, we have

]411 (Y) = btabr(f) = stabp(e) = k‘l (X) . (5)
Moreover, by Lemmas 5.1 and 5.2,

stabr (f') = p1(Y) = stabr(c) = stabr(b) = p1(X) = stabr(e’), (6)
p(Y)=T and ko(Y)=T,

and therefore
T/T = pa(Y)/kao(Y) = p1(Y) /kr (Y) = p1(X) k1 (X) 2 pa(X) /ka(X) = /S (7)

which implies that T = H N S.

5.7 We recall Rickard’s construction of a splendid Rickard equivalence between F'Se and FQ, i.e.,
a bounded chain complex X of relatively A(Q)-projective p-permutation (FSe, FQ)-bimodules
such that X ®pg X° = FSe and X° ®pg X = F(Q in the homotopy categories of (F'Se, F'Se)-
bimodules and (F'@Q, F'Q)-bimodules, respectively, where F'Se and F(Q are considered as chain
complexes concentrated in degree 0. For more details we refer the reader to [R96].

Set AgS = {(ng,q) : n € N,qg € Q} < S x @ and note that p;: S x Q@ — S restricts to
an isomorphism AgS 5 8. The module ResgV is a capped endopermutation F'@Q-module. In
everything that follows, we suppose that

ResgV has an endosplit p-permutation resolution Xy . (8)

By the proof in [R96, Lemma 7.7], see also Remark (a) at the end of Section 7 in [R96], the induced
complex Indg (Xv) is an endosplit p-permutation resolution of Ind%ResgV as F'S-modules. Since
V| Innges%V, there exists a direct summand Yy of InngV such that Yy is an endosplit p-
permutation resolution of V' as an F'S-module, and we may choose Yy to be contractible-free,
see Remark 3.2(c) and (b). The induced chain complex Indigng is then a splendid Rickard
equivalence between FSe and F'Q, see [R96, Theorem 7.8] and its subsequent Remark (a).

5.8 Proposition Suppose that stabr(e) = stabr(b) and that Res%V has an endosplit p-
permutation resolution.

(a) There exists a splendid Rickard equivalence between F,Sé and F,T f.
(b) There exists a splendid Rickard equivalence between IE‘pGINJ and F,He.

Proof (a) The equality stabr(e) = stabr(b) implies that we have
stabp(f) = stabr(c) = stabr(b) = stabr(e), S=S, T=T, ¢ =e and f'=Ff,

by (5) and (6). Let F,[e] denote the smallest field containing the coeflicients of the idempotent e.
Then F' :=T,le] = F,[f] C F. By Corollary 2.5, there exists an absolutely simple F’ N-module V'
such that V = F ®ps V’, the unique simple module in the block F'Ne. Since e is S-stable, also V'
extends to an F’S-module that we again denote by V/. Then V = F ®@p: V' also as F'Se-modules.
Since V' € pgmod has an endosplit p-permutation resolution, also V'’ € grgmod has an endosplit
p-permutation resolution X’ € Ch(pgmod), see Remark 3.2(d). Since F” is a splitting field of V'
as F'N-module, we may use the results from Theorem 7.8 and its subsequent Remark (a) in [R96]
in order to see that Indizg (X') is a splendid Rickard equivalence between F’Se and F'Q. Using
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the unique F’-form U’ € p/pymod of U € pprmod and its unique extension to an F’'T-mdoule, we

similarly obtain that Indzgg(U’ ) induces a splendid Morita equvivalence between F'Tf and F'Q.

Thus, the chain complex
7' =3 X") @ pg md% L (U')°
is a splendid Rickard equivalence between F’Se and F'Tf. The result now follows from [KL18,
Theorem 6.5].
(b) The p-permutation bimodule F,Gé induces a Morita equivalence, hence a splendid Rickard
equivalence, between IFPGB and F,Sé. Similarly, the bimodule IF, I f induces a splendid Rickard

equivalence between F, Hé and F,T'f. The result follows now from Part (a). U

5.9 Remark By the classification of indecomposable capped endopermutation modules, the hy-
pothesis in (8) is satisfied if p is odd, or if p = 2 and @ does not have a subquotient isomorphic to
the quaternion group of order 8. See [T07] for more details. Therefore, Theorem A follows from
Proposition 5.8.

5.10 (a) By Fong’s first reduction theorem, the (FSe’, FSe)-bimodule FSe induces a Morita
equivalence between FSe’ and FSe. Hence the complex FSe Qpg IndizgYV gives a splendid

Rickard equivalence between F Se’ and F Q.
(b) For any F'S-module M, let M ®p FQ be the (FS, FQ)-bimodule, given by
s(mx)y:=sm@quy, fors=ngeS,neN, meM,and z,y,q € Q.
It is straightforward to check that the map
v M @F FQ — F[S X Q| ®pa s M
veq— (1,gH) e
is an isomorphism of (F'S, F'Q)-bimodules and that it is natural in M. Therefore, it yields an
isomorphism
Yy @p FQ = dX %Yy
of chain complexes of (F'Se, FQ)-bimodules.

(c) Let U be the simple FM-module belonging to the block idempotent f. Since @ is normal
in H, we have T = @ x M. Thus, the unique extension of U to T (with @ acting trivially on U)
is a p-permutation FT-module and plays the same role as the complex Yy,. Similar as in (a), the
bimodule FTf @ pr Indié?«U induces a splendid Rickard equivalence between FTf’ and FQ.

(d) Altogether, the complex

7 := FSe @ps md 5 3Yy ®rg Ind(QAXQTT)O (U)° @pr fFT

induces a splendid Rickard equivalence between F'Se’ and FTf’. Here, (AQT)° :={(¢g,t) € QxT|
(t,q) € AgT}. Set
w:=Y (~1)"[Z,] € T*(FSe/, FTf').
neZ
By [BX08, Theorem 1.5], w is a p-permutation equivalence between F'Se’ and FTf. Moreover,
the isomorphism in (b) implies that

) s . .
Z = FSe @ps nd}53Yy @rq IndX 7, (U)° @pr fFT
= FSe®ps (Yv @r FQ)Qrq (FQ®p U°) @pr fFT

%F§€®FS (Yv@FFQ®FUO)®FTfFT~
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Let R be a Sylow p-subgroup of T containing Q. Then T = RM, and, by (7), R is also a Sylow
p-subgroup of S so that S = RN.

The following diagram depicts the subgroups, block idempotents, and modules introduced so
far.

G,b,b

\
AW

{1}

5.11 Lemma For every r € R, one has an isomorphism

FSe@rs (Vv @p FQ®@p U°) @pr fFT 2 FS"e @ps (Vv @p FQ ®p "(U°)) @pr "fFT
of chain complexes of (FSe’, FT f)-bimodules.
Proof For any M € pgmod, consider the map

FSe®ps (M ®p FQ®p U°) @pp fFT = FS"e @ps ("M ®p FQ ®p "(U°)) @pr "fFT,

mapping a® (yQqRu) ®b to ar*1~® (y quril ®u) ®@rb. It is straightforward to check that it is
well-defined, an isomorphism of (F'Se’, FT f’)-bimodules, and functorial in M. Thus, it yields the
desired isomorphism of chain complexes. U

5.12 For the rest of the paper we assume that there exists W € p,gmod such that
ResgV = F®r, W and that W has an endosplit p-permutation resolution Xy . (9)

Then the chain complex F' ®p, Xy is an endosplit p-permutation resolution of ResgV and we
assume from now on that Xy = F @p, Xw .

Note that that if @ is abelian then (9) is satisfied. In fact, every indecomposable endopermu-
tation module for an abelian p-group is a direct summand of tensor products of inflations of Heller
translates of the trivial module of quotient groups (see [D78] or [T07]), and every indecomposable
endopermutation module (over any base field) is absolutely indecomposable (see Theorem 6.6 in
the first paper [D78]). It follows that Res%(V) has an Fp-form W € g, gmod. Moreover, W has an
endosplit p-permutation resolution Xy (see [R96, Theorem 7.2] whose proof is still valid over F,).
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5.13 Proposition Suppose that R is abelian. For any 5 € S, one has an isomorphism
S(Ind%XW) = InngW of complexes of F,S-modules. In particular, for any 5 € S, one has

g(Innges%V) = Ind%Res%V as F'S-modules.

Proof The complex InngW is isomorphic to a complex whose terms are direct sums of per-
mutation Fj,S-modules of the form F,[S/Qo] where Qo < @ and whose differentials are Fp-linear
combination of maps of the form f;: F,[S/Q1] — Fp[S/Q2], @1 = > .0,c0,10, @2, for some

te @, with Q1,Q2 < Q. Let 5€ S = RN and write § = rn for some r € R and n € N. For any
Qo < @, one has an isomorphism F,[S/Qo] — °F,[S/Qo] of F,S-modules given by sQo — sn™'Qo.
Moreover, a quick computation shows that this isomorphism commutes with the above maps f,
since R is abelian. Therefore we have S(Ind%XW) = InngW. For the last assertion note that

this also implies that *(F ®F, Ind%XW) = F ®F, Ind%XW. Since the module Ind%ResgV is the
homology of the complex F' ®p, Ind%X w the result follows. U

5.14 Lemma Suppose that R is abelian. Then one has stabp(Z) = stabp(w) = p1(X) =
stabr(e’) = stabr(f') = p1(Y).

Proof Note that p;(X) = stabr(e’) = stabp(f’) = p1(Y") hold by (6).

Since the complex Z induces a splendid Rickard equivalence between F' Se’ and FT /', the in-
clusion stabr(Z) < stabr(e’) is immediate. Thus, stabr(Z) < p1(X). Conversely, if o € p;(X),
then % = % for some § € S. Write § = rn for some r € R and n € N and note that we
have % = "e. This implies that °V = "V as FS-modules. By Proposition 5.13, we have
(F ®s, nd3 Xw) = F ®p, nd3 Xy = "(F ®p, Ind)Xw) as complexes of FS-modules and
“(IndgResyV) = IndJResyV = "(IndZRes? V) as FS-modules. Therefore Lemma 3.3 implies
that %Yy =2 "Yy as complexes of F'S-modules, as Yy, was chosen to be contractible-free, see 5.7.
Since the idempotents e of F'S and f of FT are Brauer correspondents, also "e and "f are Brauer
correspondents. Since the Galois action commutes with the Brauer correspondence, % = "e implies
7f = "f. Therefore we have °U = "U as FT-modules. By Lemma 5.11, we obtain

A

1%

"(FSe wps (v ©p FQ@p U°) @pr fFT)
=~ [S% ®ps (Vv @F FQ ®p U°) @pr °fFT
~FS"e®ps (Yy ®p FQ ®p "U°) @pp "fFT
>~ FSe ®ps (Yv ®p FQ®p U°) @pp fFT = Z.

[

This proves that stabr(Z) = p1(X).

Since w is a p-permutation equivalence between FSe’ and FTf’, the inclusion stabr(w) <
stabr(e’) = p1(X) is clear. The inclusion stabr(Z) < stabr(w) is immediate, and the proof is
complete.

5.15 Corollary Suppose that R is abelian.
(a) There exists a p-permutation equivalence between F,Sé and F,Tf.

(b) There exists a p-permutation equivalence between IFPGB and F,H¢.

Proof (a) By Lemma 5.14 we have stabr(w) = stabr(e’) = stabr(f’). Hence by Lemma 4.3 there
exists a p-permutation equivalence between F,S€é and F,T'f.
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(b) The p-permutation bimodule F,Gé induces a Morita equivalence, hence a p-permutation
equivalence, between F,Gb and F,Sé. Similarly, the bimodule F,H f induces a p-permutation
equivalence between F,Hé and F,T f. The result follows now from Part (a). U

5.16 Remark If one had a descent result for splendid Rickard equivalences analogous to
Lemma 4.3, one would also obtain a splendid Rickard equivalence between IFpGl; and F,H¢ in
the above corollary, because Lemma 5.14 includes stabr(Z), while in the proof of the above corol-
lary we only used the statement about stabr(w). In order to prove such a descent result one would
need a descent result for homomorphisms between p-permutation modules.

Moreover, the approach in the proof of Proposition 5.8 does not work, since the first Fong
reduction only gives an equivalence between IFPGE and IFpS’é = ]FpS'eN’ , and not between IFPGE
and F,Sé. In order to apply the descent result from [KL18], one would first need to descend the
chain complex Z from 5.10(d) to F,[e’]. But we could not modify the approach from the proof of
Proposition 5.8 to descend to Fp[e’], unless e = ¢’ which is equivalent to @ = R and to F,[b] = F,[e].
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