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Abstract

To any block idempotent b of a group algebra kG of a finite group G over a field k of
characteristic p > 0, Puig associated a fusion system and proved that it is saturated if the
k-algebra kCG(P )e is split, where (P, e) is a maximal kGb-Brauer pair. We investigate in
the non-split case how far the fusion system is from being saturated by describing it in an
explicit way as being generated by the fusion system of a related block idempotent over
a larger field together with a single automorphism of the defect group.

1 Introduction

Let k be a field of characteristic p, let G be a finite group and let b be a block idempotent
of kG. Puig defined a fusion system F(P,e)(kGb) associated to kGb after choosing a maximal
kGb-Brauer pair (P, e). Up to category isomorphism, this fusion system does not depend on
the choice of (P, e). Puig also proved that F(P,e)(kGb) is saturated if the k-algebra kCG(P )e is
split. It is known that in the non-split case it can happen that the fusion system associated to
kGb is not saturated. In fact, the Sylow axiom can fail, while the extension axiom always holds.
In the Main Theorem 5.2 of this paper we establish a precise connection between the fusion
systems of related blocks in a Galois extension L/K of fields of characteristic p with Galois
group Γ. More precisely, let b be a block idempotent of LG and b̃ the unique block idempotent
of KG with bb̃ = b. Moreover, let (P, e) be a maximal LGb-Brauer pair and let ẽ be the unique
block idempotent of KCG(P ) with eẽ = e. Then (P, ẽ) is a maximal KGb̃-Brauer pair and one
has an inclusion of the fusion systems

F := F(P,e)(LGb) ⊆ F(P,ẽ)(KGb̃) =: F̃ .

Theorem 5.2 states that there exists an element σ ∈ AutF̃(P ) such that F̃ = 〈F , σ〉. As
consequences of the nature of σ we obtain that F̃ is saturated if and only if F is saturated and

∗MR Subject Classification: 20C20. Keywords: Blocks of finite groups; fusion systems

1



p does not divide the index [Γb : Γe] = [K(e) : K(b)] of the stabilizers of b and e under the
Galois action, or equivalently the degree of the field extensions after adjoining the coefficients of
e and b to K. In the case that L is chosen such that LCG(P )e is split, this gives a particularly
handy criterion for a fusion system of a block KGb̃ in the non-split case to be saturated, see
Theorem 6.3. The main result allows an alternative easy proof for the known fact that the
extension axiom holds also in the non-split case, see Theorem 6.2. Finally, the Main Theorem
implies that a weak form of Alperin’s fusion theorem holds also for arbitrary block fusion
systems, see Theorem 6.5.

1.1 Notation We will use the following standard notations without further notice:

For a group G and x ∈ G, we denote by cx : G → G the conjugation map g 7→ xgx−1. If
k is a commutative ring, its k-linear extension to the group algebra kG is again denoted by
cx : kG→ kG. We frequently will use left-exponential notation x(−) := cx for these maps. The
maps cx, x ∈ G, define an action of G on kG via k-algebra homomorphisms.

For H 6 G, we denote by [G/H] a set of representatives of the cosets G/H.

If a group G acts on a set X, we usually denote the stabilizer of an element x ∈ X by Gx.
Moreover, for H 6 G, we denote by XH the set of H-fixed points of X.

2 Brauer pairs

Throughout this section, G denotes a finite group, k denotes a field of characteristic p > 0,
and b denotes a block idempotent of kG, i.e., a primitive idempotent of Z(kG). We recall the
definition and properties of Brauer pairs for kG following the treatment in [AKO11, IV.2]. We
note that the blanket assumption in [AKO11, IV.2] that k is algebraically closed is not used
in the proofs of any of the statements that we cite from there. Alternatively, see also [L18,
Sections 5.9 and 6.3].

Recall that, for a p-subgroup P of G, the Brauer homomorphism with respect to P is the
k-linear projection map BrP : (kG)P → kCG(P ),

∑
g∈G αgg 7→

∑
g∈CG(P ) αgg. This is a surjec-

tive k-algebra homomorphism which respects G-conjugation: cx ◦ BrP = Br x
P
◦ cx : (kG)P →

kCG( xP ) for x ∈ G. Thus, BrP (b) is an idempotent of Z(kCG(P )) = (kCG(P ))CG(P ). Recall
further that a kG-Brauer pair is a pair (P, e) consisting of a p-subgroup P of G and a block
idempotent e of kCG(P ). If e occurs in the unique decomposition of BrP (b) into a sum of
primitive idempotents of Z(kCG(P )) (that is, if BrP (b)e = e), then we call (P, e) a (kG, b)-
Brauer pair. We denote by BP(kG) the set of kG-Brauer pairs and by BP(kG, b) the set of
(kG, b)-Brauer pairs. Clearly, BP(kG) is the disjoint union of the subsets BP(kG, b), where b
runs through the block idempotents of kG. The set BP(kG) is a G-set under the conjugation
action given by x(P, e) := ( xP, xe), and the subset BP(kG, b) is G-stable. Finally, we say that
an idempotent i of (kG)P is associated to a kG-Brauer pair (P, e) if

eBrP (i) = BrP (i) 6= 0 .

Note that if i is primitive in (kG)P then eBrP (i) 6= 0 implies that BrP (i) 6= 0 and that BrP (i)
is primitive in kCG(P ). Thus, eBrP (i) = BrP (i). One writes (Q, f) 6 (P, e) if Q 6 P and if
any primitive idempotent i of (kG)P which is associated to (P, e) is also associated to (Q, f),
see [AKO11, Definition 2.9]. This relation has the following properties.
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2.1 Theorem ([AKO11, Theorems 2.10, 2.16]) (a) Let (P, e) ∈ BP(kG) and let Q 6 P . Then
there exists a unique block idempotent f of kCG(Q) such that (Q, f) 6 (P, e).

(b) Let (Q, f) 6 (P, e) be in BP(kG) with Q E P . Then f is the unique block idempotent
of kCG(Q) which is P -stable and satisfies BrP (f)e = e.

(c) The relation 6 on BP(kG) is a partial order which is respected by the conjugation action
of G.

Clearly ({1}, b) ∈ BP(kG, b) and Part (b) of the above theorem implies that if (P, e) ∈
BP(kG, b) then ({1}, b) 6 (P, e). Parts (a) and (c) further imply that if (Q, f) 6 (P, e) holds
for elements in BP(kG) then (Q, f) ∈ BP(kG, b) if and only if (P, e) ∈ BP(kG, b).

For Brauer pairs (Q, f), (P, e) ∈ BP(kG) one writes (Q, f) E (P, e) if Q E P , f is P -
stable and BrP (f)e = e, cf. [AKO11, Definition IV.2.13]. The following result is well-known to
specialists. We state it for convenient future reference and give a proof for the convenience of
the reader.

2.2 Theorem For (Q, f), (P, e) ∈ BP(kG) with Q 6 P the following statements are equiva-
lent:

(i) One has (Q, f) 6 (P, e).

(ii) There exist primitive idempotents i of (kG)P and j of (kG)Q such that ij = j = ji,
BrP (i)e 6= 0 and BrQ(j)f 6= 0.

(iii) There exist Brauer pairs (Qi, di) ∈ BP(kG), i = 0, . . . , n, such that

(Q, f) = (Q0, d0) E (Q1, d1) E · · · E (Qn, dn) = (P, e) .

(iv) For every primitive idempotent i of (kG)P with BrP (i)e 6= 0 one has BrQ(i)f 6= 0.

(v) There exists a primitive idempotent i of (kG)P such that BrP (i)e 6= 0 and BrQ(i)f =
BrQ(i) 6= 0.

(vi) There exists a primitive idempotent i of (kG)P such that BrP (i)e 6= 0 and BrQ(i)f 6= 0.

Proof The equivalences (i)⇐⇒ (ii)⇐⇒ (iii) follow from [AKO11, Proposition IV.2.14]. More-
over, the implications (i)⇒(iv) and (v)⇒(vi) are trivial and the implication (i)⇒(v) follows from
the fact that the image of a primitive idempotent under a surjective k-algebra homomorphism
is either 0 or a primitive idempotent.

Next we show that (iv) implies (i). Let i be a primitive idempotent of (kG)P such that
BrP (i)e = BrP (i) 6= 0. By (iv), BrQ(i)f 6= 0. By Theorem 2.1(a) there exists a block idempotent
f ′ of kCG(Q) such that (Q, f ′) 6 (P, e). Thus, BrQ(i)f ′ = BrQ(i) which implies that 0 6=
BrQ(i)f = BrQ(i)f ′f and further that f = f ′ and thus (Q, f) 6 (P, e).

Finally, we show that (vi) implies (i). Let i be as in (vi). By Theorem 2.1(a) there exists a
block idempotent f ′ of kCG(Q) such that (Q, f ′) 6 (P, e). This implies BrQ(i)f ′ = BrQ(i) 6= 0
and 0 6= BrQ(i)f = BrQ(i)f ′f . Thus f = f ′ and (Q, f) 6 (P, e).

Recall that if I 6 H 6 G then we have a well-defined trace map

TrHI : (kG)I → (kG)H , a 7→
∑

x∈[H/I]

xa .

A subgroup P of G, minimal with the property that b ∈ TrGP ((kG)P ), is called a defect group of
the block idempotent b and of the block algebra kGb. The defect groups of kGb form a single
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G-conjugacy class of p-subgroups of G. Maximal elements in BP(kG, b) enjoy properties that
resemble the Sylow Theorem for finite groups.

2.3 Theorem ([AKO11, Theorem 2.20]) (a) The maximal elements in BP(kG, b) with respect
to 6 form a single G-orbit.

(b) For (P, e) ∈ BP(kG, b) the following are equivalent.

(i) (P, e) is a maximal element in BP(kG, b).

(ii) P is a defect group of kGb.

(iii) P is maximal among all p-subgroups of G with the property BrP (b) 6= 0.

3 Fusion systems of block algebras

Throughout this section, p is a prime. We first recall the basic notions and properties of fusion
systems, a structure introduced by Puig. Our terminology follows [AKO11, Chapter I].

For subgroups Q and R of a finite group G we denote by HomG(Q,R) the set of all group
homomorphisms ϕ : Q → R with the property that there exists x ∈ G with ϕ(u) = cx(u) for
all u ∈ Q. Moreover, we set AutG(Q) := HomG(Q,Q).

3.1 Definition ([AKO11, Definition I.2.1]) Let P be a finite p-group. A subcategory F of the
category of finite groups whose objects are the subgroups of P is called a fusion system over P
if for any two subgroups Q and R of P , the set HomF(Q,R) has the following properties:

(i) HomP (Q,R) ⊆ HomF(Q,R) and every element of HomF(Q,R) is injective.

(ii) For each ϕ ∈ HomF(Q,R), the group isomorphism Q→ ϕ(Q), u 7→ ϕ(u), and its inverse
are morphisms in F .

For instance, if G is a finite group and P is a p-subgroup of G, we obtain a fusion system
FP (G) over P by setting HomFP (G)(Q,R) := HomG(Q,R), for all subgroups Q and R of P .
Note that the intersection of two fusion systems over P is again a fusion system and that a
fusion system over P is determined by the isomorphisms it contains. Thus the smallest fusion
system over a finite p-group P is the fusion system FP (P ).

3.2 Definition ([AKO11, Definition I.2.4]) Let F be a fusion system over a finite p-group P .
A subgroup Q of P is called fully F-centralized if |CP (Q)| > |CP (Q′)| for any subgroup Q′ of
P which is F -isomorphic to Q. Similarly, Q is called fully F-normalized if |NP (Q)| > |NP (Q′)|
for any subgroup Q′ of P which is F -isomorphic to Q.

3.3 Definition ([AKO11, Definition I.2.2]) Let F be a fusion system on a finite p-group P and
let ϕ : Q→ R be an isomorphism in F . One denotes by Nϕ the set of all elements y ∈ NP (Q)
for which there exists z ∈ NP (R) with the property ϕ ◦ cy = cz ◦ ϕ : Q → R. Note that
QCP (Q) 6 Nϕ 6 NP (Q) and that Nϕ does not depend on F , but only on ϕ and P .

If F is a fusion system over a finite p-group P and Q 6 P then we set AutF(Q) :=
HomF(Q,Q), a subgroup of the automorphism group of Q. The following definition of sat-
uration goes back to Stancu and is an equivalent reformulation of the original definition, see
[AKO11, Proposition I.9.3].
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3.4 Definition A fusion system F over a p-group P is called saturated if the following two
conditions hold.

(i) Sylow axiom: The group AutP (P ) is a Sylow p-subgroup of AutF(P ).

(ii) Extension axiom: For every Q 6 P and every ϕ ∈ HomF(Q,P ) such that ϕ(Q) is fully
F -normalized there exists a morphism ψ ∈ HomF(Nϕ, P ) whose restriction to Q equals ϕ.

For instance, if P is a Sylow p-subgroup of a finite group G then the fusion system FP (G)
is saturated (see [AKO11, Theorem 2.3]).

3.5 Definition Let G be a finite group, let k be a field of characteristic p, let b be a block
idempotent of kG, and let (P, e) be a maximal (kG, b)-Brauer pair. We define a category
F(P,e)(kGb) as follows. First, for every Q 6 P denote by eQ the unique block idempotent
of kCG(Q) with (Q, eQ) 6 (P, e). The objects of F(P,e)(kGb) are the subgroups of P and
for subgroups Q and R of P let HomF(P,e)(kGb)(Q,R) denote the set of group homomorphisms
ϕ : Q→ R such that there exists x ∈ G with ϕ(u) = cx(u) for all u ∈ Q and x(Q, eQ) 6 (R, eR).
Composition in F(P,e)(kGb) is the usual composition of functions.

3.6 Remark Let kG, b, and (P, e) be as in Definition 3.5.

(a) It is clear from the definition that F(P,e)(kGb) is a fusion system over P .

(b) If kGb is the principal block of kG, then by Brauer’s third main theorem, F(P,e)(kGb) is
equal to FP (G) and P is a Sylow p-subgroup of G. Thus, F(P,e)(kGb) is saturated in this case.

(c) Example 3.8 below shows that in general the Sylow axiom does not hold for F(P,e)(kGb).
But we will show in Theorem 6.2 that the extension axiom holds for F(P,e)(kGb).

The following theorem was first proved by Puig. It follows from Theorem IV.3.2 and Propo-
sition IV.3.14 in [AKO11]. See also [L18, Theorem 8.5.2] and note that there the terminology is
different: Fusion systems in [L18] are defined to be saturated fusion systems in our terminology.

3.7 Theorem Let kG, b, and (P, e) be as in Definition 3.5 and suppose that the k-algebra
kCG(P )e is split, i.e., for every simple kCG(P )e-module V one has a k-algebra isomorphism
EndkCG(P )e(V ) ∼= k. Then the fusion system F(P,e)(kGb) is saturated.

We are grateful to Radha Kessar who suggested the following example to us.

3.8 Example Let p = 2, k = F2, the field with 2 elements, and G := D24 = (C3 × C4) o C2,
the dihedral group with 24 elements, with C2 acting by inversion on C3 × C4. Let g denote a
generator of C3. Then b := g+g2 is a block idempotent of F2G and (P, e) := (C4, b) is a maximal
(F2G, b)-Brauer pair. We have AutP (P ) = {1}, since P is abelian and an easy computation
shows that AutF(P,e)(F2Gb)(P ) ∼= C2. Thus, the Sylow axiom does not hold for F(P,e)(F2Gb) and
therefore the fusion system F(P,e)(F2Gb) is not saturated.

4 Extension of scalars

Throughout this section L/K denotes a finite Galois extension of fields of characteristic p > 0
and Γ denotes its Galois group. Moreover, G denotes a finite group.

Γ acts via K-algebra automorphisms on the group algebra LG and also on Z(LG) by
applying γ ∈ Γ to the the coefficients of an element in LG. Thus, Γ permutes the block
idempotents of LG and fixes the block idempotents b of KG. Since BrP : (LG)P → LCG(P )
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commutes with the Γ-action, Theorem 2.3 implies that any Γ-conjugate of b has the same defect
groups as b. We denote by Γb the stabilizer of b in Γ and set

b̃ :=
∑

γ∈[Γ/Γb]

γb .

Clearly, b̃ is an idempotent in (Z(LG))Γ = Z(KG). More precisely one has the following:

4.1 Proposition (a) Let b be a block idempotent of LG. Then b̃ :=
∑
γ∈[Γ/Γb]

γb is a block
idempotent of KG.

(b) The map b 7→ b̃ induces a bijection between the set of Γ-orbits of block idempotents of
LG and the set of block idempotents of KG.

(c) If b is a block idempotent of LG and b̃ is the block idempotent of KG associated to it
as in (a) then b and b̃ have the same defect groups.

Proof (a) By definition, b̃ is the sum of the distinct Γ-conjugates of b, thus an idempotent of
Z(KG). To see that b̃ is primitive in Z(KG), assume that b̃ = c1 + c2 for non-zero orthogonal
idempotents c1, c2 ∈ Z(KG) and let I1 and I2 denote the set of primitive idempotents of Z(LG)
that occur in a primitive decomposition of c1 and c2 in Z(LG), respectively. Then I1 and I2 are
disjoint and Γ-stable. On the other hand I1∪I2 is the single Γ-orbit of b. This is a contradiction.

(b) This is immediate from (a).

(c) Let P be a defect group of b̃. By Theorem 2.3, one has BrP (b̃) 6= 0 inKCG(P ) ⊆ LCG(P ).
Thus 0 6= BrP (b̃) =

∑
γ∈[Γ/Γb] BrP ( γb) implies that some Γ-conjugate of b, and therefore also

b, has a defect group Q containing P . Thus, 0 6= BrQ(b) = BrQ(bb̃) = BrQ(b)BrQ(b̃), which
implies that BrQ(b̃) 6= 0 and therefore |Q| 6 |P |. This implies P = Q.

Note that Γ acts on BP(LG) via

γ(P, e) = (P, γe) , (1)

for γ ∈ Γ and (P, e) ∈ BP(LG). Note that this action commutes with the G-action on BP(LG)
so that we obtain an action of Γ × G on BP(LG). Moreover, since BrP commutes with the
action of Γ and since the G-action on LG commutes with the Γ-action on LG, Γ×G acts via
poset isomorphisms on BP(LG). Thus, if b is a block idempotent of LG and γ ∈ Γ, the G-posets
BP(LGb) and BP(LG γb) are isomorphic via (1) and Γb ×G acts via poset automorphisms on
BP(LGb).

In the next proposition we write 6K and 6L for the poset structures of BP(KG) and
BP(LG), respectively. They are related as follows.

4.2 Proposition For (Q, f), (P, e) ∈ BP(LG) with Q 6 P , the following are equivalent:

(i) One has (Q, f̃) 6K (P, ẽ) in BP(KG).

(ii) There exists γ ∈ Γ such that (Q, f) 6L
γ(P, e) in BP(LG).

Proof Assume first that (i) holds and let i be a primitive idempotent of (KG)P such that
BrP (i)ẽ = BrP (i) 6= 0. Then, by definition also BrQ(i)f̃ = BrQ(i) 6= 0. Let J be a primitive
decomposition of i in (LG)P . Since BrP (i)ẽ 6= 0, there exists j ∈ J such that BrP (j)ẽ 6= 0.
Thus, there exists γ ∈ Γ such that BrP (j) γe 6= 0. Since BrP (j) is primitive in LCG(P ), we
have BrP (j) γe = BrP (j). Let f ′ be the block idempotent of LCG(Q) such that (Q, f ′) 6L
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(P, γe) = γ(P, e). Then, by Theorem 2.2 also BrQ(j)f ′ = BrQ(j) 6= 0. Thus BrQ(j)f ′f̃ =
BrQ(j)BrQ(i)f ′f̃ = BrQ(j)f ′BrQ(i)f̃ = BrQ(j)BrQ(i) = BrQ(j) 6= 0 which implies that f ′f̃ 6= 0.

This implies f ′ = δf for some δ ∈ Γ. Thus δ(Q, f) 6L
γ(P, e) and (ii) holds after applying δ−1.

Next assume that γ ∈ Γ with (Q, f) 6L
γ(P, e). By Theorem 2.1(a) there exists a block

idempotent f1 of LCG(Q) such that (Q, f̃1) 6K (P, ẽ). Since we already proved that (i) implies

(ii), there exists δ ∈ Γ such that (Q, f1) 6L
δ(P, e). Thus we have (Q, γ

−1

f) 6L (P, e) and

also (Q, δ
−1

f) 6L (P, e). The uniqueness part of Theorem 2.2(a) now implies that f and f1 are
Γ-conjugate. Thus f̃ = f̃1 and (Q, f̃) 6K (P, ẽ).

The following corollaries are now immediate from Proposition 4.2.

4.3 Corollary The map

BP(LG)→ BP(KG) , (P, e) 7→ (P, ẽ) ,

is a surjective morphism of G-posets, which restricts to a surjective morphism of G-posets
BP(LGb)→ BP(KGb̃) for every block idempotent b of LG.

4.4 Corollary Let b be a block idempotent of LG and let (P, e) ∈ BP(LGb) be a maximal
LGb-Brauer pair. Then (P, ẽ) ∈ BP(KGb̃) is a maximal (KGb̃)-Brauer pair and one obtains
an inclusion of fusion systems

F(P,e)(LGb)→ F(P,ẽ)(KGb̃)

which is the identity on objects and on morphisms.

5 The Main Theorem

We keep p, G, L/K, and Γ as introduced at the beginning of Section 4. Moreover we fix a block
idempotent b of LG and denote by Γb the stabilizer of b in Γ. We fix a maximal LGb-Brauer pair
(P, e) ∈ BP(LGb). For everyQ 6 P , let eQ denote the unique block idempotent of LCG(Q) such
that (Q, eQ) 6 (P, e) in BP(LG). By Proposition 4.2, one has (Q, ẽQ) 6 (P, ẽ) so that ẽQ = ẽQ.
This allows us to use the notation ẽQ for both purposes. Recall that Γ × G acts on BP(LG)
and Γb × G acts on BP(LGb) via poset isomorphisms. Note that for any (Q, f) ∈ BP(LGb)
one has Γ(Q,f) = Γf . For the stabilizer in G of a KG-Brauer pair or LG-Brauer pair (Q, f) we
will write NG(Q, f).

Let p1 : G×Γ→ G and p2 : G×Γ→ Γ denote the projection maps. For any subgroup X of
G× Γ, we set k1(X) := {g ∈ G | (g, 1) ∈ X} and k2(X) := {γ ∈ Γ | (1, γ) ∈ X}. As explained
in [B10, p. 24], one has

k1(X) E p1(X) 6 G and k2(X) E p2(X) 6 Γ with p1(X)/k1(X) ∼= p2(X)/k2(X) (2)

via gk1(X)↔ γk2(X) if and only if (g, γ) ∈ X.

We denote by K(b) and K(e) the subfields of L obtained by adjoining the coefficients of the
block idempotents b ∈ LG and e ∈ LCG(P ). Thus, K(b) is the fixed field of Γb in L and K(e)
is the fixed field of Γe in L.
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5.1 Proposition Let b be a block idempotent of LG.

(a) For any (R, eR) 6 (Q, eQ) in BP(LGb) one has Γe = Γ(P,e) 6 Γ(Q,eQ) 6 Γ(R,eR) 6
Γ({1},b) = Γb. In particular, K(b) ⊆ K(e).

(b) Let X := stabG×Γ(P, e) be the stabilizer of the maximal LGb-Brauer pair (P, e). One
has

k1(X) = NG(P, e) , p1(X) = NG(P, ẽ) , k2(X) = Γe , and p2(X) = Γb .

(c) One has NG(P, e) E NG(P, ẽ) and NG(P, ẽ)/NG(P, e) ∼= Γb/Γe. Moreover, K(e)/K(b) is
a Galois extension with cyclic Galois group isomorphic to NG(P, ẽ)/NG(P, e).

Proof (a) It suffices to show that Γ(Q,eQ) 6 Γ(R,eR). Let γ ∈ Γ(Q,eQ). Then γ(R, eR) 6L
γ(Q, eQ) = (Q, γeQ) = (Q, eQ). The uniqueness part of Theorem 2.1(a) implies that γeR = eR.
Thus, γ ∈ Γ(R,eR).

(b) The first equation is clear from the definition of k1(X). For the proof of the second

equation, let g ∈ p1(X). Then there exists γ ∈ Γ with (P, e) = (g,γ)(P, e) = ( gP, gγe). From
gγe = e it follows that gẽ = ẽ. Thus g(P, ẽ) = (P, ẽ) and g ∈ NG(P, ẽ). Conversely, if g ∈
NG(P, ẽ) then gẽ = ẽ which implies that there exists γ ∈ Γ with ge = γe. Thus, (g,γ−1)(P, e) =
(P, e) and g ∈ p1(X). The third equation follows immediately from the definition of k2(X). For

the proof of the fourth equation let γ ∈ p2(X). Then there exists g ∈ G with (g,γ)(P, e) = (P, e).

Since ({1}, b) 6 (P, e), this implies (g,γ)({1}, b) 6 (g,γ)(P, e) = (P, e). The uniqueness part in

Theorem 2.1(a) implies that (g,γ)({1}, b) = (1, b) and that γ ∈ Γb. Conversely, assume that

γ ∈ Γb. Then ({1}, b) 6 (P, e) implies ({1}, b) = (1,γ)({1}, b) 6 (1,γ)(P, e) = (P, γe). This
implies that both (P, e) and γ(P, e) are maximal LGb-Brauer pairs. By Theorem 2.3(a), there
exists g ∈ G such that g(P, γe) = (P, e). Thus (g, γ) ∈ X and γ ∈ p2(X).

(c) The assertions of the first sentence follow from Part (b) and (2). For the second statement
it suffices to show that Γb/Γe is cyclic. Note that the coefficients of e ∈ LCG(P ) generate a
finite field extension of the prime field Fp in L, which we denote by Fp(e). Since Γe E Γb, we
have a Galois extension K(e)/K(b) with Galois group ∆ ∼= Γb/Γe. Now, restriction from K(e)
to Fp(e) is an injective group homomorphism from ∆ to the cyclic Galois group Gal(Fp(e)/Fp).
In fact, if δ ∈ ∆ restricts to the identity on Fp(e), then it is the identity on Fp(e) and on K,
thus on K(e). This completes the proof of Part (c).

Next we give a more precise picture of the inclusion of fusion systems from Corollary 4.4.
In the following theorem the term 〈F , σ〉 denotes the fusion system generated by F and σ, i.e.,
the intersection of all fusion systems over P that contain F and σ.

5.2 Theorem Let L/K be a finite Galois extension of fields of characteristic p > 0 with Galois
group Γ, let b be a block idempotent of LG, and let (P, e) be a maximal LGb-Brauer pair. Set
F := F(P,e)(LGb) and F̃ := F(P,ẽ)(KGb̃). Let g0 ∈ NG(P, e) be such that g0NG(P, ẽ) generates

NG(P, e)/NG(P, ẽ) (see Proposition 5.1(c)) and set σ := cg0 ∈ Aut(P ). Then F̃ = 〈F , σ〉.
More precisely, σ ∈ AutF̃(P ) and, for any subgroups Q and R of P and any ϕ ∈

HomF̃(Q,R), there exist i ∈ Z, ψ ∈ HomF(Q, σ−i(R)) and ψ′ ∈ HomF(σi(Q), R) with
ϕ = σi|σ−i(R) ◦ ψ = ψ′ ◦ σi|Q.

Proof Since g0 ∈ NG(P, ẽ), we have σ = cg0 ∈ AutF̃(P ). It follows that 〈F , σ〉 ⊆ F̃ . In order
to prove the reverse inclusion, let Q and R be subgroups of P and let ϕ ∈ HomF̃(Q,R). Then
there exists g ∈ G such that ϕ = cg : Q → R and g(Q, ẽQ) 6K (R, ẽR). By Proposition 4.2

8



there exists γ ∈ Γ such that g(Q, eQ) 6L (R, γeR). Since ({1}, b) = g({1}, b) 6L
g(Q, eQ) 6L

(R, γeR) and also ({1}, γb) 6L (R, γeR), Theorem 2.1(a) implies ({1}, b) = ({1}, γb) so that
γ ∈ Γb. Thus, both (P, e) and (P, γe) are maximal LGb-Brauer pairs. Theorem 2.3(a) implies

that there exists h ∈ G such that h(P, e) = (P, γe) and we obtain (P, e) = h−1

(P, γe) >L
h−1

(R, γeR) = ( h
−1

R, h
−1γeR). Again, Theorem 2.1(a) implies that h−1γeR = eh−1Rh and therefore

h−1g(Q, eQ) 6L
h−1

(R, γeR) = ( h
−1

R, eh−1Rh). This in turn implies that the homomorphism

α := ch−1g : Q→ h−1

R belongs to HomF(Q, h
−1

R) and that the homomorphism ϕ = cg : Q→ R
factors as

ϕ = ch ◦ α : Q→ h−1

R→ R . (3)

Since h(P, e) = (P, γe), we obtain h ∈ NG(P, ẽ) and can write h = gi0x for some i ∈ Z and
x ∈ NG(P, e). This implies that the map ch : P → P factors as ch = σi ◦ β : P → P where

σi = cgi0 : P → P and β := cx ∈ AutF(P ), since x ∈ NG(P, e). Restriction to h−1

R yields the
factorization

ch|h−1Rh = σi|β(h−1Rh) ◦ β|h−1Rh : h−1

R→ β( h
−1

R)→ R

with β( h
−1

R) = σ−i(R) and β|h−1Rh ∈ HomF( h
−1

R,R). Setting ψ := β|h−1Rh ◦ α : Q→ σ−1(R)
and using (3) we obtain the desired factorization of ϕ. This also implies the inclusion F̃ ⊆
〈F , σ〉.

In order to find ψ′ with the desired property we use the elements g, h, x, and i from the
first part of the proof and note that

(P, e) = γ−1h(P, e) >L
γ−1

( hQ, heQ) = ( hQ, γ
−1heQ) ,

which implies that γ−1heQ = ehQh−1 . Thus,

gh−1

( hQ, ehQh−1) =
gh−1

( hQ, γ
−1heQ) = ( gQ, gγ

−1

eQ) 6L (R, eR) ,

which implies that α′ := cgh−1 : hQ→ R belongs to HomF( hQ,R). Thus, ϕ can be factored as

ϕ = cg = cgh−1 ◦ ch = α′ ◦ ch : Q→ hQ→ R . (4)

We can rewrite h = gi0x = x′gi0 for some x′ ∈ NG(P, e) and obtain an element β′ ∈ AutF(P )
together with a factorization ch = β′ ◦ σi : P → P . Restricting this equation to Q yields a
factorization

ch = β′|σi(Q) ◦ σi|Q : Q→ σi(Q)→ hQ .

Setting ψ′ := α′ ◦ β′|σi(Q) ∈ HomF(σi(Q), R), the factorization in (4) can now be expressed as
ϕ = ψ′ ◦ σi|Q as claimed.

6 Consequences of the Main Theorem

In this section we prove several consequences of Theorem 5.2.
Recall that if F is a fusion system over a p-group P , a subgroup Q of P is called F -centric

if CP (R) = Z(R) for all subgroups R of P which are F -isomorphic to Q.
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6.1 Proposition Let L/K, b, (P, e) and F ⊆ F̃ be as in Theorem 5.2.

(a) A subgroup Q of P is fully F -centralized if and only if it is fully F̃ -centralized.

(b) A subgroup Q of P is fully F -normalized if and only if it is fully F̃ -normalized.

(c) A subgroup Q of P is F -centric if and only it is F̃ -centric.

Proof The ‘if’-parts follow immediately from the fact that the F -isomorphism class of Q is
a subset of the F̃ -isomorphism class of Q. For the forward implications note that by Theo-
rem 5.2 two subgroups Q and Q′ of P are F̃ -isomorphic if and only if there exists a subgroup
Q′′ of P such that Q is F -isomorphic to Q′′ and Q′ = σi(Q′′) for some i ∈ Z. Moreover,
σi(CP (Q′′)) = CP (σi(Q′′)), σi(NP (Q′′)) = NP (σi(Q′′)), and σi(Z(Q′′)) = Z(σi(Q′′)), since σi is
an automorphism of P . The result is now immediate.

The following Theorem is known to experts. See for instance the part of the proof of [L18,
Theorem 8.5.2] dealing with the extension axiom and note that it does not use any assumptions
on the field of coefficients k. Below is a proof with a different approach, using Theorem 5.2.

6.2 Theorem Let k be a field of characteristic p > 0 and let c be a block idempotent of kG.
Then the extension axiom holds for the fusion system of kGc, for any choice of maximal Brauer
pair.

Proof Let (P, f) be a maximal kGc-Brauer pair. We apply Theorem 5.2 with K = k, a
splitting field L of KCG(P )f such that L/K is a finite Galois extension with Galois group
Γ, and to a block idempotent b of LG with cb 6= 0. Then c = b̃. Moreover, there exists a
maximal LGb-Brauer pair (P, e) such that ef = e and therefore f = ẽ. We aim to show that
the fusion system F̃ = F(P,ẽ)(KGb̃) satisfies the extension axiom. Note that by Theorem 3.7,
the extension axoim holds for F = F(P,e)(LGb), since L is a splitting field of LCG(P )e. Let

ϕ ∈ HomF̃(Q,P ) be such that ϕ(Q) is fully F̃ -normalized. By Theorem 5.2 we can factorize
ϕ = σi◦ψ for some ψ ∈ HomF(Q,P ). With ϕ(Q) also ψ(Q) = σ−i(ϕ(Q)) is fully F̃ -normalized,
since they are F̃ -isomorphic and NP (ψ(Q)) = σ−i(NP (ϕ(Q))). By Proposition 6.1(b), ψ(Q) is
fully F -normalized. Since F satisfies the extension axiom, there exists ψ̂ ∈ HomF(Nψ, P ) such

that ψ̂|Q = ψ. It follows that ϕ̂ := σi ◦ ψ̂ ∈ HomF̃(Nψ, P ) extends ϕ. To finish the proof it
suffices to show that Nϕ ⊆ Nψ. So let x ∈ Nϕ. Then x ∈ NP (Q) and there exists y ∈ NP (ϕ(Q))
with ϕ ◦ cx = cy ◦ ϕ : Q

∼→ ϕ(Q). But this implies

ψ ◦ cx = σ−i ◦ ϕ ◦ cx = σ−i ◦ cy ◦ ϕ = cσ−i(y) ◦ σ−i ◦ ϕ = cσ−i(y) ◦ ψ ,

with σ−i(y) ∈ σ−i(NP (ϕ(Q))) = NP (σ−i(ϕ(Q))) = NP (ψ(Q)). Thus, Nϕ ⊆ Nψ and the proof
is complete.

6.3 Theorem Let L/K, b, (P, e) and F ⊆ F̃ be as in Theorem 5.2. The fusion system F̃
is saturated if and only if the fusion system F is saturated and p does not divide [NG(P, ẽ) :
NG(P, e)] = [Γb : Γe] = [K(e) : K(b)]. In particular, if moreover L is a splitting field for
LCG(P )e, then F̃ is saturated if and only if p does not divide [NG(P, ẽ) : NG(P, e)] = [Γb :
Γe] = [K(e) : K(b)].

Proof Note that the map NG(P, e) → AutF(P ), g 7→ cg induces an isomorphism
NG(P, e)/CG(P )→ AutF(P ) which maps PCG(P )/CG(P ) to AutP (P ). Thus, the Sylow axiom
holds for F if and only if p - [NG(P, e) : PCG(P )]. Similarly, the Sylow axiom holds for F̃ if
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and only if p - [NG(P, ẽ) : PCG(P )]. By Theorem 6.2 it suffices to show that the Sylow axiom
holds for F̃ if and only it holds for F and p - [Γb : Γe]. But, by Proposition 5.1(c), one has
[Γb : Γe] = [NG(P, ẽ) : NG(P, e)] = [K(e) : K(b)] which implies the result.

Next we will show that a weak form of Alperin’s fusion theorem holds for arbitrary block
fusion systems.

6.4 Definition Let F be a fusion system over a p-group P . We say that Alperin’s weak fusion
theorem holds for F if F = 〈AutF(Q) | Q ∈ C〉, where C is the set of subgroups of P which are
F -centric and fully F -normalized.

6.5 Theorem Let k be a field of characteristic p and let c be a block idempotent of kG. Then
Alperin’s weak fusion theorem holds for the fusion system of kGc, for any choice of maximal
kGc-Brauer pair.

Proof Set K := k and choose L, b, (P, e) as in the proof of Theorem 6.2 with c = b̃ and
apply Theorem 5.2 to this situation with F := F(P,e)(LGb) and F̃ := F(P,ẽ)(KGb̃). We need

to show that Alperin’s weak fusion theorem holds for F̃ . Since F is saturated, Alperin’s weak
fusion theorem holds for F , see for instance [L18, Theorem 8.2.8]. Thus, F = 〈AutF(Q) | Q ∈
C〉, where C denotes the set of subgroups of P which are F -centric and fully F -normalized.
Moreover, by Proposition 6.1, C is equal to the set C̃ of subgroups of P which are F̃ -centric
and fully F̃ -normalized. Thus, by Theorem 5.2, we have

F̃ = 〈F , σ〉 = 〈{AutF(Q) | Q ∈ C} ∪ {σ}〉 ⊆ 〈AutF̃(Q) | Q ∈ C〉 ⊆ F̃ .

But this implies F̃ = 〈AutF̃(Q) | Q ∈ C〉 = 〈AutF̃(Q) | Q ∈ C̃〉, which means that Alperin’s
weak fusion theorem holds for F̃ .

References

[AKO11] M. Aschbacher, R. Kessar, B. Oliver: Fusion systems in Algebra and topology.
London Mathematical Society Lecture Note Series, 391. Cambridge University Press,
Cambridge, 2011.

[B10] S. Bouc: Biset functors for finite groups. Lecture Notes in Mathematics, 1990. Springer-
Verlag, Berlin, 2010.

[L18] M. Linckelmann: The block theory of finite group algebras. Vol. II. London Mathe-
matical Society Student Texts, 92. Cambridge University Press, Cambridge, 2018.

11


