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Abstract

For any block of a finite group over an algebraically closed field of characteris-
tic 2 which has dihedral, semidihedral, or generalized quaternion defect groups, we
determine explicitly the decomposition of the associated diagonal p-permutation func-
tor over an algebraically closed field F of characteristic 0 into a direct sum of simple
functors. As a consequence we see that two blocks with dihedral, semidihedral, or
generalized quaternion defect groups are functorially equivalent over F if and only if
their fusion systems are isomorphic. It is an open question if two blocks (with ar-
bitrary defect groups) that are functorially equivalent over F must have isomorphic
fusion systems. The converse is wrong in general.
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1 Introduction

Let p be a prime, k an algebraically closed field of characteristic p, and F an algebraically
closed field of characteristic zero.

In [3], the notion of a diagonal p-permutation functor over an arbitrary commutative
ring R was defined. It is by definition an R-linear functor from the category Rpp∆

k to
the category of R-modules. The objects of the category Rpp∆

k are finite groups, and
a morphism from H to G is an element in RT∆(kG, kH) := R ⊗Z T

∆(kG, kH), where
T∆(kG, kH) is the Grothendieck group (with respect to split exact sequences) of the
category of finitely generated p-permutation (kG, kH)-bimodules which are projective as
left kG-modules and as right kH-modules. Composition of morphisms is induced by the
tensor product of bimodules. We refer the reader to [2] and [3] for further notations
and definitions related to this category. Diagonal p-permutation functors over R form an
abelian and R-linear category.
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A group-block pair (over k) is by definition a pair (G, b) of a finite group G and a block
idempotent b of kG. A defect group of such a pair (G, b) is a defect group of b in G, and
the fusion system of (G, b) is the fusion system of b in kG. To every group-block pair (G, b)
(over k), one can assign a diagonal p-permutation functor RT∆

(G,b) over R, see [3]. Two

group-block pairs (G, b) and (H, c) are called functorially equivalent over R if the functors
RT∆

(G,b) and RT∆
(H,c) are isomorphic.

If R = F, it was shown in [3] that the category of diagonal p-permutation functors
is semisimple, that two group-block pairs, which are functorially equivalent over F, have
isomorphic defect groups, and that for a given finite p-group D there are only finitely many
functorial equivalence classes of group-block pairs with defect group isomorphic to D.

In [8] it was shown that if (G, b) and (H, c) are group-block pairs with cyclic defect
groups or 2-blocks of defect 2 or 3, then (G, b) and (H, c) are functorially equivalent over F
if and only if they have isomorphic fusion systems. The goal of this paper is to show a
similar result for group-block pairs with dihedral, generalized quaternion and semidihedral
defect groups.

1.1 Theorem Let (G, b) and (H, c) be group-block pairs with dihedral, generalized
quaternion, or semidihedral defect groups. Then, (G, b) and (H, c) are functorially equiv-
alent over F if and only if they have isomorphic fusion systems.

Theorem 1.1 is proved by computing explicitly the multiplicities of the simple functors
occurring as direct summands in the various block functors in each case, see Proposi-
tions 4.3, 5.3 and 6.3. In this sense, we prove much more than what is necessary to prove
Theorem 1.1. We believe that these explicit formulas will be useful in the future.

The saturated fusion systems for 2-groups of dihedral, generalized quaternion, and
semidihedral type are known and described in [1, Example I.3.8]. Up to isomorphism,
there exist precisely three such fusion systems on dihedral groups, two on the generalized
quaternion group of order 8, three on those of order 2n > 16, and four on semidihedral
groups. All of them are realized by principal blocks of various groups. For details see
Sections 4–6, where Theorem 1.1 is proved separately for these three types of groups.
Together with the results in [8], Theorem 1.1 implies the following corollary.

1.2 Corollary Let (G, b) and (H, c) be group-block pairs such that kGb and kHc have
tame representation type. Then (G, b) and (H, c) are functorially equivalent over F if and
only if they have isomorphic fusion systems.

It is an open question if arbitrary group-block pairs that are functorially equivalent
over F must have isomorphic fusion systems. The converse is wrong in general, since there
exist blocks with isomorphic fusion systems but different numbers of simple module, while
the number of simple modules is determined by the functorial equivalence class over F,
see [6] or [1, Example IV.5.42].
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The paper is arranged as follows. In Section 2 we recall some relevant results on
diagonal p-permutation functors and in Section 3 we prove some results on multiplicities
of simple functors in block functors that are specific to the defect groups at hand. In
Sections 4–6 we prove the main result for the three types of defect groups mentioned
above.

2 Preliminaries

We recall some definitions and results from [3] that are relevant for this paper. Recall
that k is an algebraically closed field of characteristic p > 0 and that F is an algebraically
closed field of characteristic zero.

2.1 (a) A pair (P, u) where P is a p-group and u ∈ Aut(P ) is an automorphism of p′-order
(i.e., of order not divisible by p) is called a D∆-pair. In this case we write P 〈u〉 for the
semidirect product P o 〈u〉. We say that two D∆-pairs (P, u) and (Q, v) are isomorphic
if there exists a group isomorphism f : P 〈u〉 → Q〈v〉 such that f(u) is Q〈v〉-conjugate
to v. We denote by Aut(P, u) the group of automorphisms of the D∆-pair (P, u) and by
Out(P, u) the quotient Aut(P, u)/Inn(P 〈u〉), see [3, Notation 6.8].

(b) Let G and H be finite groups and let b and c be block idempotents of kG and kH,
respectively. We say that the pairs (G, b) and (H, c) are functorially equivalent over F,
if the corresponding diagonal p-permutation functors FT∆

(G,b) and FT∆
(H,c) are isomorphic,

see [3, Definition 10.1]. Here, FT∆
(G,b) = FT∆(−, kG) ◦ [kGb] = FT∆(−, kGb). By [3,

Lemma 10.2], the pairs (G, b) and (H, c) are functorially equivalent over F if and only if
there exist ω ∈ FT∆(kGb, kHc) and σ ∈ FT∆(kHc, kGb) such that

ω ·H σ = [kGb] in FT∆(kGb, kGb) and σ ·G ω = [kHc] in FT∆(kHc, kHc) .

(c) Recall from [3, Corollary 6.15] that the category of diagonal p-permutation functors
over F is semisimple. Moreover, the simple diagonal p-permutation functors SL,u,V , up
to isomorphism, are parametrized by the isomorphism classes of triples (L, u, V ), where
(L, u) is a D∆-pair and V is a simple FOut(L, u)-module, each up to isomorphism.

(d) Since the category of diagonal p-permutation functors over F is semisimple, the
functor FT∆

(G,b) is a direct sum of simple diagonal p-permutation functors SL,u,V . Hence,

two group-block pairs (G, b) and (H, c) are functorially equivalent over F if and only if, for
any triple (L, u, V ), the multiplicities of the simple functor SL,u,V in FT∆

(G,b) and FT∆
(H,c)

are the same. In the next Theorem we recall a formula for these multiplicities and we will
need to recall the following notation.

(e) Let (G, b) be a group-block pair and let (D, eD) be a maximal (G, b)-Brauer pair
(over k). For any subgroup P 6 D, let eP be the unique block idempotent of kCG(P )
with (P, eP ) 6 (D, eD). Moreover, let F be the fusion system of (G, b) with respect to
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(D, eD) and let [F ] be a set of F-isomorphism classes of objects of F , i.e., subgroups of
D.

Let (L, u) be a D∆-pair. For P 6 D we set P(P,eP )(L, u) to be the set of group
isomorphisms π : L→ P satisfying π ◦ u ◦ π−1 ∈ AutF (P ). Thus, P(P,eP )(L, u) = ∅ unless
P ∼= L. The set P(P,eP )(L, u) is an

(
NG(P, eP ),Aut(L, u)

)
-biset via

g · π · ϕ = ig ◦ π ◦ ϕ ,

for g ∈ NG(P, eP ), π ∈ P(P,eP )(L, u) and ϕ ∈ Aut(L, u), where ig denotes the conjugation
automorphism x 7→ gxg−1. We denote by [P(P,eP )(L, u)] a set of NG(P, eP ) × Aut(L, u)-
orbits of P(P,eP )(L, u).

For π ∈ P(P,eP )(L, u), the stabilizer in Aut(L, u) of the NG(P, eP )-orbit of π is denoted
by Aut(L, u)

(P,eP ,π)
. Thus,

Aut(L, u)
(P,eP ,π)

= {ϕ ∈ Aut(L, u) | πϕπ−1 ∈ AutF (P )} .

Finally, for P 6 D, (L, u), and π ∈ P(P,eP )(L, u) as above, we de-
note by PIM

(
kCG(P )eP , u

)
the set of isomorphism classes of projective indecom-

posable kCG(P )eP -modules that are fixed under πuπ−1. Further, we denote
by FPIM

(
kCG(P )eP , u

)
its F-linear span. Note that Aut(L, u)

(P,eP ,π)
acts on

PIM
(
kCG(P )eP , u

)
via U · ϕ := gU , where g ∈ NG(P, eP ) such that igπϕ = π.

2.2 Theorem ([3, Theorem 8.22(b)]) Let (G, b) be a block, (L, u) a D∆-pair and V an
irreducible FOut(L, u)-module. The multiplicity of the simple diagonal p-permutation
functor SL,u,V in the functor FT∆

(G,b) is equal to the F-dimension of⊕
P∈[F ]

⊕
π∈[P(P,eP )(L,u)]

FPIM
(
kCG(P )eP , u

)
⊗Aut(L,u)

(P,eP ,π)
V .

Note that by Theorem 2.2, FT∆
(G,b) is isomorphic to a direct sum of only finitely many

simple functors SL,u,V . Moreover, if SL,u,V is isomorphic to a direct summand of FT∆
(G,b)

then L is isomorphic to a subgroup of a defect group of (G, b). In addition to the notation
introduced in 2.1, we’ll need the following.

2.3 Notation Let (G, b) be a group-block pair.

(a) For a D∆-pair (L, u) and an irreducible FOut(L, u)-module, we denote by
m
(
SL,u,V ,FT∆

(G,b)

)
the multiplicity of SL,u,V as a direct summand of FT∆

(G,b).

(b) By l(G, b), we denote the number of isomorphism classes of simple kGb-modules.
By [3, Corollary 8.23], one has l(G, b) = m

(
S1,1,F,FT∆

(G,b)

)
.

(c) Let (D, eD) be a maximal (G, b)-Brauer pair and F the fusion system of (G, b) with
respect to (D, eD). Following [1], for any P 6 D, we set OutF (P ) := AutF (P )/Inn(P )
and OutD(P ) = AutD(P )/Inn(P ). Note that OutD(P ) 6 OutF (P ) 6 Out(P ).
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3 More on multiplicities of simple functors in block functors

The results in this section will be used to calculate the multiplicities of the simple functors
in block functors in Sections 4–6.

3.1 Remark We list the possible triples (L, u, V ) parametrizing simple diagonal p-
permutation functors over F for some p-groups L, cf. 2.1(a),(c).

(a) For L = 1, the only possible triple is (1, 1,F).

(b) Let L be a cyclic group of order 2n. Then Aut(L) is an abelian 2-group. It follows
that the possible triples (L, u, V ) are of the form (L, 1, V ), where V is an FAut(L)-module.
Note that V has F-dimension one.

(c) Let L be a Klein-four group. Then Aut(L) = Out(L) ∼= S3. Up to isomorphism, the
only D∆-pairs with first entry L are (L, 1) and (L, u0), where u0 ∈ Aut(L) is an element
of order 3. We have Out(L, 1) ∼= S3, Aut(L, u0) ∼= A4, and Out(L, u0) ∼= 1. Hence, the
only simple functors arising from L = V4 are SV4,1,F, SV4,1,F− , SV4,1,V2 , and SV4,u0,F, where
F− is the sign representation of S3 and V2 is an irreducible FS3-module of dimension 2.

(d) Let L = Q8 be the quaternion group of order 8. Then Aut(L) ∼= S4 and Out(L) ∼=
S3. Let u0 ∈ Aut(L) be an element of order 3. Up to isomorphism, the only D∆-pairs with
first entry L are (L, 1) and (L, u0). We have Out(L, 1) = Out(L) ∼= S3 and Out(L, u0) = 1.
Thus, the simple functors arising from L = Q8 are SQ8,1,F, SQ8,1,F− , SQ8,1,V2 , and SQ8,u0,F,
where F− and V2 are as in Part (c).

(e) Let L be a dihedral group of order 2n > 8 or generalized quaternion or semidihedral
of order 2n > 16. Then Out(L) is an abelian 2-group determined in more detail in
Sections 4–6. Thus, the simple functors arising from L are all of the form SL,1,V , where
V is a one-dimensional FOut(L)-module.

3.2 Remark For the following it is useful to be aware of the following fact. Let f : G→ H
be an isomorphism of groups. Then f induces isomorphisms Aut(f) : Aut(G) → Aut(H)
and Out(f) : Out(G) → Out(H) in the obvious way, which of course depend on f . In
contrast, the isomorphisms between the module categories Aut(H)Mod → Aut(G)Mod and

Out(H)Mod → Out(G)Mod, induced by restriction along the isomorphisms Aut(f) and
Out(f), respectively, do not depend on the choice of f , up to natural isomorphism.

The following lemmas will be used in Sections 4–6.

3.3 Lemma ([8, Lemma 2.4]) Let (G, b) be a group-block pair, let (D, eD) be a maximal
(G, b)-Brauer pair and let F denote the fusion system of (G, b) with respect to (D, eD).
Then, for any simple FOut(D)-module V , one has

m
(
SD,1,V ,FT∆

(G,b)

)
= dimF

(
V OutF (D)

)
,

where V OutF (D) denotes the OutF (D)-fixed points of V .

5



The following lemma is a generalization of Lemma 3.3

3.4 Lemma Let (G, b) be a group-block pair, let (D, eD) be a maximal (G, b)-Brauer pair
and let F denote the fusion system of (G, b) with respect to (D, eD). Further, suppose that
L is a p-group and that for every subgroup P 6 D with P ∼= L one has l

(
kCG(P )eP

)
= 1.

Then, for every simple FOut(L)-module V , one has

m
(
SL,1,V ,FT∆

(G,b)

)
=

∑
L∼=P∈[F ]

dimF
(
V OutF (P )

)
,

where V is viewed as an Out(P )-module via any isomorphism L ∼= P , cf. Remark 3.2.

Proof The proof is similar to the proof of Lemma 3.3 given in [3]. We add the details
for convenience. Let P 6 D. Note that P(P,eP )(L, 1) is the set of all isomorphisms from
L to P . Suppose that L ∼= P and let π : L → P an isomorphism. Then Aut(L, 1) acts
transitively on P(P,eP )(L, 1) and we may choose [P(P,eP )(L, 1)] = {π}. With this, we have

Aut(L, 1)
(P,eP ,π)

= {ϕ ∈ Aut(L) | πϕπ−1 ∈ AutF (P )} = π−1AutF (P )π .

Since l
(
kCG(P )eP

)
= 1, the formula in Theorem 2.2 implies that

m
(
SL,1,V ,FT∆

(G,b)

)
=

∑
L∼=P∈[F ]

dimF
(
F⊗F[π−1AutF (P )π] V

)
=

∑
L∼=P∈[F ]

dimF
(
V π−1AutF (P )π

)
=

∑
L∼=P∈[F ]

dimF
(
V OutF (P )

)
.

3.5 Lemma Let (G, b) be a group-block pair, let (D, eD) be a maximal (G, b)-Brauer pair
and let F denote the fusion system of (G, b) with respect to (D, eD). Furthermore, let L
be a Klein-four group, let (L, u) be a D∆-pair and V a simple FOut(L, u)-module. Finally,
suppose that L ∼= P 6 D.

(a) If OutF (P ) ∼= C2 then (cf. Remark 3.1(c))

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
=


1 , if (u, V ) = (1,F);

0 , if (u, V ) = (1,F−);

1 , if (u, V ) = (1, V2);

0 , if (u, V ) = (u0,F).

(b) If OutF (P ) ∼= S3 then (cf. Remark 3.1(c))

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
=


1 , if (u, V ) = (1,F);

0 , if (u, V ) = (1,F−);

0 , if (u, V ) = (1, V2);

1 , if (u, V ) = (u0,F).
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Proof We may assume that P = L and make use of Remark 3.1(c).

(a) Suppose that OutF (P ) ∼= C2. If u = 1 then

P(P,eP )(L, u) = Aut(L) ∼= S3 and [P(P,eP )(L, u)] = {id} .

This implies that

Aut(L, 1)
(P,eP ,id)

= {ϕ ∈ Aut(L) | ϕ ∈ AutF (P )} ∼= C2 ,

and hence that

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
= dimF(F⊗FC2 V ) = dimF(V C2) .

The latter is equal to 1 if V = F or V ∼= V2 and equal to 0 otherwise. For u = u0 of
order 3, we have

P(P,eP )(L, u) = {ϕ ∈ Aut(L) | ϕu0ϕ
−1 ∈ AutF (P )} = ∅ ,

and the result follows.

(b) Suppose that OutF (P ) ∼= S3 and let u = 1. Then we have again

P(P,eP )(L, u) = Aut(L) ∼= S3 and [P(P,eP )(L, u)] = {id}, .

This implies that

Aut(L, u)
(P,eP ,id)

= {ϕ ∈ Aut(L) | ϕ ∈ AutF (P )} ∼= S3 ,

and hence that

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
= dimF(F⊗FS3 V ) = dimF(V S3) .

The latter is nonzero only if V = F and the result follows if u = 1. If u = u0 has order 3
then

P(P,eP )(L, u) = {ϕ ∈ Aut(L) | ϕu0ϕ
−1 ∈ AutF (P )} = Aut(L) ∼= S3 ,

and we may choose [P(P,eP )(L, u)] = {id}. Since Out(V4, u0) = 1, we obtain

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
= dimF(F⊗F F) = 1

as desired.

The proof of the following lemma is similar to the proof of Lemma 3.4 and is left to
the reader.
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3.6 Lemma Let (G, b) be a group-block pair, let (D, eD) be a maximal (G, b)-Brauer pair
and let F denote the fusion system of (G, b) with respect to (D, eD). Furthermore, let L be
a quaternion group of order 8, let (L, u) be a D∆-pair and V a simple FOut(L, u)-module.
Finally, suppose that L ∼= P 6 D.

(a) If OutF (P ) ∼= C2 then (cf. Remark 3.1(d))

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
=


1 , if (u, V ) = (1,F);

0 , if (u, V ) = (1,F−);

1 , if (u, V ) = (1, V2);

0 , if (u, V ) = (u0,F).

(b) If OutF (P ) ∼= S3 then (cf. Remark 3.1(c))

dimF

( ⊕
π∈[P(P,eP

)(L,u)]

F⊗Aut(L,u)
(P,eP ,π)

V

)
=


1 , if (u, V ) = (1,F);

0 , if (u, V ) = (1,F−);

0 , if (u, V ) = (1, V2);

1 , if (u, V ) = (u0,F).

4 Blocks with dihedral defect groups

Throughout this section we assume that (G, b) is a group-block pair with defect group D
isomorphic to D2n = 〈s, t | s2n−1

= t2 = 1, tst = s−1〉, the dihedral group of order 2n, with
n > 3. First we recall a result that holds for dihedral groups of arbitrary order.

4.1 Remark Let m > 3 be an integer and let D2m = 〈s, t | sm = t2 = 1, tst = s−1〉 be a
dihedral group of order 2m. It is well-known and easy to see that the automorphisms of
D2m are of the form fa,b, where fa,b(s) = sb and fa,b(t) = tsa, with integers a, b such that
gcd(m, b) = 1. It is easily verified that the map

Z/mZ o (Z/mZ)× → Aut(D2m) , (ā, b̄) 7→ fa,b ,

is an isomorphism, where the semidirect product is formed with respect to the action of
b̄ on ā by multiplication in the ring Z/mZ. Moreover, the inner automorphism given by
conjugation with tlsk is equal to f−2k,(−1)l , k, l ∈ Z, so that under the above isomor-
phism, Inn(D2n) corresponds to the subgroup 2(Z/mZ) o {±1 + mZ}. Thus, the above
isomorphism induces an isomorphism

Out(D2m) ∼=

{
Z/2Z×

(
(Z/mZ)×/{±1 +mZ}

)
, if m is even;

(Z/mZ)×/{±1 +mZ} , if m is odd.

In particular, Out(D2m) is abelian and

Out(D2n) ∼= Z/2Z×
(
(Z/2n−1Z)×/{±1 + 2n−1Z}

)
is an abelian 2-group.
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4.2 (a) Following [4, Section 1], we define the following subgroups of D2n :

Sm := 〈sm〉 with sm := s2n−m−1
,

a cyclic subgroup of order 2m, for 0 6 m 6 n− 1, and

W 1
m := 〈sm−1, t〉 and W 2

m := 〈sm−1, st〉 for 1 6 m 6 n− 1.

Then the subgroups D2n , Sm (0 6 m 6 n−1) and W i
m (i ∈ {1, 2} and 1 6 m 6 n−1), form

a complete set of representatives of the conjugacy classes of subgroups of D2n . Moreover,
W i
m (for i = 1, 2 and 3 6 m 6 n − 1) is isomorphic to a dihedral group of order 2m and

W i
2, for i = 1, 2 are isomorphic to Klein-four groups. For i = 1, 2 and 2 6 m 6 n− 2, one

has ND2n
(W i

m) = W i
m+1.

(b) Up to isomorphism, there exist three saturated fusion systems on D (see [1, Ex-
ample 3.8] and [5, Theorem 5.3]). Following [1] we denote by F00 (resp. F01, F11) the
fusion system with three (resp. two, one) isomorphism classes of involutions. They can
be realized, respectively, as the fusion systems of the groups D, of the principal blocks of
PGL(2, q) for any odd prime power q such that 2(q + 1)2 = 2n or 2(q − 1)2 = 2n, and
of the principal block of PSL(2, q) for any odd prime power q such that (q + 1)2 = 2n or
(q − 1)2 = 2n. One has

AutF00(W i
2) ∼= C2 , AutF01(W 1

2 ) ∼= C2 , AutF01(W 2
2 ) ∼= S3 , and AutF11(W i

2) ∼= S3 ,

for i = 1, 2. For each of the three fusion systems, the essential subgroups of D are precisely
the subgroups isomorphic to Klein-four groups.

The following theorem generalizes the result in [8] from n = 3 to n > 3.

4.3 Proposition Let (G, b) be a group-block pair, let (D, eD) be a maximal (G, b)-Brauer
pair and let F denote the fusion system of (G, b) with respect to (D, eD). Suppose that
the defect group D of (G, b) is isomorphic to D2n , the dihedral group of order 2n.

(a) Let L = D2n . Then, for any simple FOut(L)-module V , one has
m
(
SL,1,V ,FT∆

(G,b)

)
= 1.

(b) Let L = D2m with 3 6 m 6 n − 1 and let ε ∈ Out(L) be the class of the
automorphism of L that is the identity on the cyclic subgroup of order 2m−1 and switches
the two conjugacy classes of non-central involutions of L. Then, for any simple FOut(L)-
module V , one has

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
2 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).

(c) Let L = C2m be a cyclic group of order 2m with 2 6 m 6 n−1, and let V be a simple
FOut(L)-module. Moreover, let ε ∈ Out(L) be the class of the inversion automorphism
x 7→ x−1 of L. Then

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
1 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).
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(d) Let L = V4 and let a1, a2, a3, a4 denote the multiplicities of SV4,1,F, SV4,1,F− ,
SV4,1,V2 , SV4,u0,F in FT∆

(G,b), respectively (see Remark 3.1(c)). Then

(a1, a2, a3, a4) =


(2, 0, 2, 0) , if F ∼= F00;

(2, 0, 1, 1) , if F ∼= F01;

(2, 0, 0, 2) , if F ∼= F11.

(e) Let L = C2. Then

m
(
SC2,1,F,FT

∆
(G,b)

)
=


3 , if F ∼= F00;

2 , if F ∼= F01;

1 , if F ∼= F11.

(f) Let L = {1}. Then

m
(
S{1},1,F,FT∆

(G,b)

)
=


1 , if F ∼= F00;

2 , if F ∼= F01;

3 , if F ∼= F11.

Proof (a) Since Aut(D) is a 2-group (see Remark 4.1), the Sylow axiom for saturated
fusion systems implies that OutF (D) = 1. Moreover, V is 1-dimensional, since Out(D) is
an abelian group by Remark 4.1. The result follows now from Lemma 3.3.

(b) We will use Lemma 3.4. We first note that there are precisely two F-isomorphism
classes of subgroups of D isomorphic to D2m . In fact there are two conjugacy classes
of subgroups of D isomorphic to D2m . Moreover, they are not fused in F , since the
Klein-four groups are the only F-essential subgroups of D, and if they were fused they
would have to be conjugate by an element in D, by Alperin’s fusion theorem. Now let
D2m

∼= P 6 D. Again, by Alperin’s fusion theorem, AutF (P ) is given by conjugations
with elements from ND(P ). But ND(P ) is isomorphic to a dihedral subgroup of D of
order 2m+1. Thus, OutF (P ) ∼= C2. The non-trivial element of OutF (P ) is the class of
the conjugation automorphism with any element of ND(P ) which is not in P . We may
choose this element to be an element of order 2m. Note that this element centralizes
the cyclic subgroup of order 2m−1 of P . Therefore, under any isomorphism P ∼= L the
corresponding element of L will again centralize the cyclic subgroup of L of order 2m−1. It
follows that the class of the conjugation with this element is equal to ε as described in the
result. Finally, by choosing P to be fully F-centralized, we can see that CD(P ) = Z(D)
is a defect group of the group-block pair (CG(P ), eP ). Since Z(D) = Z(P ) is central in
CG(P ), we obtain l

(
kCG(P )eP

)
= 1. The result now follows from Lemma 3.4, and the

fact that V is one-dimensional, since Out(L) is abelian.

(c) We will use again Lemma 3.4. First note that there is a unique subgroup P of
D isomorphic to L. Therefore P is fully F-centralized and CD(P ) is a defect group of
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(CG(P ), eP ). But CD(P ) is the cyclic subgroup of order 2n−1 of D. Since it is cyclic and
p = 2, the block kCG(P )eP is nilpotent and we obtain l

(
kCG(P )eP

)
= 1. Moreover, by

Alperin’s fusion theorem (the only F-essential subgroups of D are isomorphic to Klein-four
groups), we obtain OutF (P ) ∼= ND(P )/PCD(P ) ∼= C2 and that the non-trivial element
of OutF (P ) is given by the inversion automorphism of P . The result now follows from
Lemma 3.4.

(d) We will use Lemma 3.5. By Alperin’s fusion theorem, the two conjugacy classes of
subgroups of D isomorphic to V4 are also the F-isomorphism classes. We may choose V4

∼=
P 6 D to be fully F-centralized. Then CD(P ) = P is a defect group of (CG(P ), eP ) and
it is central in CG(P ). Thus, l

(
kCG(P )eP

)
= 1. The result now follows from Theorem 2.2

and Lemma 3.5.

(e) For any subgroup P of D of order 2, one has l
(
kCG(P )eP

)
= 1 by the last para-

graph before Proposition 4B and by Proposition 4F of [4]. Lemma 3.4 implies that
m
(
SC2,1,F,FT∆

(G,b)

)
is equal to the number of F-isomorphism classes of subgroups of D

of order 2. The result follows.

(f) Since m
(
S1,1,F,FT∆

(G,b)

)
= l(kGb), see [3, Corollary 8.23], the result follows imme-

diately from [4, Theorem 2].

If a simple functor SL,u,V occurs as a direct summand of FT∆
(G,b) then L is isomorphic to

a subgroup of the defect group D of (G, b). Therefore, Proposition 4.3 covers all possible
simple functors. Since the multiplicities computed in Proposition 4.3 only depend on
the fusion system of (G, b) and since non-isomorphic fusion systems produce different
multiplicities of S1,1,F, this proves the part of Theorem 1.1 concerning dihedral defect
groups.

5 Blocks with generalized quaternion defect groups

Throughout this section we assume that (G, b) is a group-block pair with defect group
D isomorphic to Q2n = 〈s, t | s2n−1

= t4 = 1, t−1st = s−1, s2n−2
= t2〉, the generalized

quaternion group of order 2n, with n > 4. The case n = 3 has been already established
in [8].

5.1 Remark It is well-known and an easy verification that every automorphism of Q2n

(for n > 4) is of the form fa,b, where fa,b(s) = sb and fa,b(t) = tsa for some a, b ∈ Z with
gcd(2, b) = 1. This induces a group isomorphism

Z/2n−1Z o (Z/2n−1Z)× → Aut(Q2n) , (ā, b̄) 7→ fa,b ,

where in the semidirect product the multiplicative group (Z/2n−1Z)× acts by multiplica-
tion on the additive group Z/2n−1Z. It is easy to see that conjugation with an element
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tlsk, for integers k, l, is equal to f−2k,(−1)l . This implies that under the above isomor-

phism Inn(Q2n) corresponds to the subgroup 2Z/2n−1Z o {±1 + 2n−1Z} and that the
above isomorphism induces an isomorphism

Out(Q2n) ∼= Z/2Z×
(
(Z/2n−1Z)×/{±1 + 2n−1Z}

)
.

In particular, Aut(Q2n) is a 2-group and Out(Q2n) is an abelian 2-group.

5.2 (a) Similar to 4.2, we define the following subgroups of Q2n :

Sm := 〈sm〉 with sm := s2n−m−1
,

a cyclic subgroup of order 2m for 0 6 m 6 n− 1, and

T 1
m := 〈sm−1, t〉 and T 2

m := 〈sm−1, st〉 for 2 6 m 6 n− 1.

Then the subgroups Q2n , Sm (0 6 m 6 n−1) and T im (i ∈ {1, 2} and 2 6 m 6 n−1), form
a complete set of representatives of the conjugacy classes of subgroups of Q2n . Moreover,
T im (for i = 1, 2 and 4 6 m 6 n − 1) is isomorphic to a generalized quaternion group of
order 2m and T i3, for i = 1, 2 are isomorphic to quaternion groups of order 8. For i = 1, 2
and 2 6 m 6 n− 2, one has NQ2n

(T im) = T im+1.

(b) Up to isomorphism, there exist three saturated fusion systems on D (see [1, Ex-
ample 3.8] and [5, Theorem 5.3]). Following again [1] we denote by F00 (resp. F01, F11)
the fusion system with three (resp. two, one) isomorphism classes of cyclic groups of or-
der 4. They can be realized, respectively, as the fusion systems of the groups D, of the
principal blocks of 2.PGL(2, q) for any odd prime power q such that 2(q + 1)2 = 2n−1 or
2(q− 1)2 = 2n, and of the principal block of SL(2, q) for any odd prime power q such that
(q + 1)2 = 2n−1 or (q − 1)2 = 2n−1. One has

AutF00(T i3) ∼= C2 , AutF01(T 1
3 ) ∼= C2 , AutF01(T 2

3 ) ∼= S3 , and AutF11(T i2) ∼= S3 ,

for i = 1, 2. For each of the three fusion systems, the essential subgroups of D are precisely
the subgroups isomorphic to quaternion groups of order 8.

5.3 Proposition Let (G, b) be a group-block pair, let (D, eD) a maximal (G, b)-Brauer
pair and let F denote the fusion system of (G, b) with respect to (D, eD). Suppose that
the defect group D of (G, b) is isomorphic to Q2n , the generalized quaternion group of
order 2n with n > 4.

(a) Let L = Q2n . Then, for any simple FOut(L)-module V , one has
m
(
SL,1,V ,FT∆

(G,b)

)
= 1.

(b) Let L = Q2m with 4 6 m 6 n − 1 and let ε ∈ Out(L) be the class of the
automorphism of L that is the identity on the cyclic subgroup of order 2m−1 and switches
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the two conjugacy classes of subgroups of order 4 of L not contained in the cyclic subgroup
of order 2m−1. Then, for any simple FOut(L)-module V , one has

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
2 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).

(c) Let L = C2m be a cyclic group of order 2m with 3 6 m 6 n−1, and let V be a simple
FOut(L)-module. Moreover, let ε ∈ Out(L) be the class of the inversion automorphism
x 7→ x−1 of L. Then

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
1 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).

(d) Let L = Q8 and let a1, a2, a3, a4 denote the multiplicities of SQ8,1,F, SQ8,1,F− ,
SQ8,1,V2 , SQ8,u0,F in FT∆

(G,b), respectively (see Remark 3.1(d)). Then

(a1, a2, a3, a4) =


(2, 0, 2, 0) , if F ∼= F00;

(2, 0, 1, 1) , if F ∼= F01;

(2, 0, 0, 2) , if F ∼= F11.

(e) Let L = C4. Then

m
(
SC4,1,F− ,FT

∆
(G,b)

)
= 0 and m

(
SC4,1,F,FT

∆
(G,b)

)
=


3 , if F ∼= F00;

2 , if F ∼= F01;

1 , if F ∼= F11.

(f) One has

m
(
S1,1,F,FT∆

(G,b)

)
= m

(
SC2,1,F,FT

∆
(G,b)

)
=


1 , if F ∼= F00;

2 , if F ∼= F01;

3 , if F ∼= F11.

Proof (a) Since the automorphism group Aut(D) is a 2-group (see Remark 5.1), the
Sylow axiom for saturated fusion systems implies that OutF (D) = 1. Moreover, since
Out(D) is an abelian group (again by Remark 5.1), the module V has dimension one. The
result follows now from Lemma 3.3.

(b) We will use Lemma 3.4. By arguments similar to the proof of Proposition 4.3(b),
one shows that there are precisely two F-isomorphism classes of subgroups of D isomor-
phic to Q2m . Let Q2m

∼= P 6 D. Since the quaternion subgroups of order 8 are the
only F-essential subgroups of D, Alperin’s fusion theorem implies that AutF (P ) is given
by conjugations with elements from ND(P ). But ND(P ) is isomorphic to a generalized
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quaternion subgroup of D of order 2m+1. Thus, OutF (P ) ∼= C2. The non-trivial element
of OutF (P ) is the class of the conjugation automorphism with any element of ND(P )
which is not in P . We may choose this element to be an element of order 2m. Note
that this element centralizes the cyclic subgroup of order 2m−1 of P . Therefore, under
any isomorphism P ∼= L the corresponding element of L will again centralize the cyclic
subgroup of L of order 2m−1. It follows that the class of the conjugation with this element
is equal to ε as described in the result. Finally, by choosing P to be fully F-centralized, we
can see that CD(P ) = Z(D) is a defect group of the group-block pair (CG(P ), eP ). Since
Z(D) = Z(P ) is central in CG(P ), we obtain l

(
kCG(P )eP

)
= 1. The result now follows

from Lemma 3.4, and the fact that V is one-dimensional, since Out(L) is abelian.

(c) The proof of this part is similar to the proof of Proposition 4.3(c). One shows
that there is a unique subgroup P of D isomorphic to L, that kCG(P )eP is nilpotent
and hence l

(
kCG(P )eP

)
= 1, and that OutF (P ) ∼= ND(P )/PCD(P ) ∼= C2 with the non-

trivial element given by the inversion automorphism of P . The result follows again from
Lemma 3.4.

(d) We will use Lemma 3.6. By Alperin’s fusion theorem, the two conjugacy classes of
subgroups of D isomorphic to Q8 are also the F-isomorphism classes. We may choose Q8

∼=
P 6 D to be fully F-centralized. Then CD(P ) = P is a defect group of (CG(P ), eP ) and
it is central in CG(P ). Thus, l

(
kCG(P )eP

)
= 1. The result now follows from Theorem 2.2

and Lemma 3.6.

(e) Let P be a subgroup of D isomorphic to C4. We may choose P to be fully F-
centralized. Then (CG(P ), eP ) has a cyclic defect group CD(P ). Since p = 2, it follows that
kCG(P )eP is nilpotent and we obtain l

(
kCG(P )eP

)
= 1. Moreover, OutF (P ) = Out(P ).

Lemma 3.4 implies that m
(
SC4,1,F− ,FT∆

(G,b)

)
is equal to zero and that m

(
SC4,1,F,FT∆

(G,b)

)
is equal to the number of F-isomorphism classes of subgroups of D isomorphic to C4. The
result follows from Remark 5.2.

(f) The center Z = Z(D) of D is the unique subgroup of D isomorphic to C2.
Therefore Z is fully F-centralized and D is a defect group of (CG(Z), eZ). More-
over, the fusion system of (CG(Z), eZ) is isomorphic to F . It follows from [7, Sec-
tion 3] that l

(
kCG(Z)eZ

)
= l(kGb). Theorem 2.2 and [3, Corollary 8.23] imply that

m
(
SC2,1,F,FT∆

(G,b)

)
= l
(
kCG(Z)eZ

)
= l(kGb) = m

(
S{1},1,F,FT∆

(G,b)

)
. The result follows

again from [7, Section 3].

The same reasoning as at the end of Section 4 shows now that Proposition 5.3, together
with the result in [8] for Q8, implies the part of Theorem 1.1 concerning generalized
quaternion defect groups.

6 Blocks with semidihedral defect groups

Throughout this section we assume that (G, b) is a group-block pair with defect group D
isomorphic to SD2n = 〈s, t | s2n−1

= t2 = 1, t−1st = s2n−2−1〉, the semidihedral group of
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order 2n, with n > 4.

6.1 Remark In the group SD2n as above, for any integer a, the order of tsa is equal to
2 if a is even and to 4 if a is odd. Thus any automorphism of SD2n must map t to an
element of the form tsa with even a. It is probably well-known and easy to verify that
every automorphism of SD2n is of the form fa,b with fa,b(s) = sb and fa,b(t) = tsa with
integers a, b such that a is even and b is odd. One obtains an isomorphism

2Z/2n−1Z o (Z/2n−1Z)× → Aut(SD2n) , (ā, b̄) 7→ fa,b ,

where in the semidirect product, the multiplicative group (Z/2n−1Z)× acts by multi-
plication on the additive group 2Z/2n−1Z. It is straightforward to verify that con-
jugation with the element tlsk, for integers k and l, is equal to the automorphism
f(2n−2−2)k,(2n−2−1)l . Since the element (2n−2 − 2) + 2n−1Z generates the additive group

2Z/2n−1Z, the group Inn(SD2n) corresponds under the above isomorphism to the subgroup
2Z/2n−1Z o 〈2n−2 − 1 + 2n−1Z〉. Thus, the above isomorphism induces an isomorphism

Out(SD2n) ∼= (Z/2n−1Z)×/〈2n−2 − 1 + 2n−1Z〉 .

In particular, Aut(SD2n) is a 2-group and Out(SD2n) is an abelian 2-group. Note that
the element 2n−2 − 1 + 2n−1Z has order 2 in the multiplicative group (Z/2n−1Z)×. It
is well-known that the latter group is the direct product of the subgroups generated by
the classes of the elements −1 and 5. Moreover, the class of 5 generates a subgroup of
index 2 in (Z/2n−1Z)×. Thus, (Z/2n−1Z)× has precisely 3 elements of order 2, namely
the classes of −1, and 2n−2 ± 1. One can show that in the direct product decomposition
(Z/2n−1Z)× = 〈−1+2n−1Z〉×〈5+2n−2Z〉 the element 2n−2−1 has non-trivial components
in both factors. In fact, it is clearly not contained in the first factor and every element
of the second factor is congruent to 1 modulo 4. This implies that Out(SD2n) is a cyclic
group of order 2n−3, generated by the class of the automorphism f0,5.

6.2 (a) Similar to 4.2(a) and 5.2(a), we define the following subgroups of SD2n :

Sm := 〈sm〉 with sm := s2n−m−1
,

a cyclic subgroup of order 2m for 0 6 m 6 n− 1, and

T 1
m := 〈sm−1, t〉 for 1 6 m 6 n− 1 and T 2

m := 〈sm−1, st〉 for 2 6 m 6 n− 1.

Then the subgroups SD2n , Sm (0 6 m 6 n − 1), T 1
m (1 6 m 6 n − 1) and T 2

m (2 6 m 6
n − 1), form a complete set of representatives of the conjugacy classes of subgroups of
Q2n . Moreover, T 1

m, for 3 6 m 6 n − 1 (resp. T 2
m, for 4 6 m 6 n − 1), is isomorphic to

a dihedral group (resp. generalized quaternion group) of order 2m, T 2
3 is isomorphic to a

quaternion group of order 8, T 1
2 is isomorphic to a Klein-four group and T 2

2 is isomorphic
to a cyclic group of order 4. For i = 1, 2 and 2 6 m 6 n− 2, one has NSD2n

(T im) = T im+1.
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(b) Up to isomorphism, there exist four saturated fusion systems on D (see [1, Exam-
ple 3.8] and [5, Theorem 5.3]). Following again [1] we denote these fusion systems by Fij ,
for i, j ∈ {0, 1}, where i = 0 (resp. i = 1) means the fusion system with two (resp. one)
isomorphism classes of involutions and j = 0 (resp. j = 1) means the fusion systems with
two (resp. one) isomorphism classes of cyclic groups of order 4. The fusion system F00,
F01, F10 and F11 can be realized, respectively, as the fusion system of the group D, of the
principal blocks of GL(2, q) for any odd prime power q such that (q + 1)2 = 2n−2, of the
principal blocks of PSL(2, q2)oC2, the non-split extension by the field automorphism, for
any odd prime power q such that (q+ 1)2 = 2n−2, and of the principal blocks of PSL(3, q)
for any odd prime power q such that (q + 1)2 = 2n−2. One has

AutF0j (T
1
2 ) ∼= C2 , and AutF1j (T

1
2 ) ∼= S3 for j = 1, 2;

and
AutFi0(T 2

3 ) ∼= C2 , and AutFi1(T 2
3 ) ∼= S3 for i = 1, 2 .

For each of the four fusion systems, the essential subgroups ofD are precisely the subgroups
isomorphic to Klein-four groups and to quaternion groups of order 8.

6.3 Proposition Let (G, b) be a group-block pair, let (D, eD) a maximal (G, b)-Brauer
pair and let F denote the fusion system of (G, b) with respect to (D, eD). Suppose that
the defect group D of (G, b) is isomorphic to SD2n , the semidihedral group of order 2n.

(a) Let L = SD2n . Then, for any simple FOut(L)-module V , one has
m
(
SL,1,V ,FT∆

(G,b)

)
= 1.

(b) Let L = D2m for 3 6 m 6 n−1 and let ε ∈ Out(L) be the class of the automorphism
of L that is the identity on the cyclic subgroup of order 2m−1 and switches the two
conjugacy classes of non-central involutions of L. Then for any simple FOut(L)-module
V , one has

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
1 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).

(c) Let L = C2m be a cyclic group of order 2m with 3 6 m 6 n−1, and let V be a simple
FOut(L)-module. Moreover, let ε ∈ Out(L) be the class of the inversion automorphism
x 7→ x−1 of L. Then

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
1 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).

(d) Suppose that n > 4. Let L = Q2m with 4 6 m 6 n− 1 and let ε ∈ Out(L) be the
class of the automorphism of L that is the identity on the cyclic subgroup of order 2m−1

and switches the two conjugacy classes of subgroups of order 4 of L not contained in the
cyclic subgroup of order 2m−1. Then, for any simple FOut(L)-module V , one has

m
(
SL,1,V ,FT∆

(G,b)

)
=

{
1 , if ε ∈ ker(V );

0 , if ε /∈ ker(V ).
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(e) Let L = Q8 and let a1, a2, a3, a4 denote the multiplicities of SQ8,1,F, SQ8,1,F− ,
SQ8,1,V2 , SQ8,u0,F in FT∆

(G,b), respectively (see Remark 3.1(d)). Then

(a1, a2, a3, a4) =


(1, 0, 1, 0) , if F ∼= F00;

(1, 0, 1, 0) , if F ∼= F10;

(1, 0, 0, 1) , if F ∼= F01;

(1, 0, 0, 1) , if F ∼= F11.

(f) Let L = V4 and let a1, a2, a3, a4 denote the multiplicities of SV4,1,F, SV4,1,F− ,
SV4,1,V2 , SV4,u0,F in FT∆

(G,b), respectively (see Remark 3.1(c)). Then

(a1, a2, a3, a4) =


(1, 0, 1, 0) , if F ∼= F00;

(1, 0, 0, 1) , if F ∼= F10;

(1, 0, 1, 0) , if F ∼= F01;

(1, 0, 0, 1) , if F ∼= F11.

(g) Let L = C4. Then

m
(
SC4,1,F− ,FT

∆
(G,b)

)
= 0 and m

(
SC4,1,F,FT

∆
(G,b)

)
=


2 , if F ∼= F00;

2 , if F ∼= F10;

1 , if F ∼= F01;

1 , if F ∼= F11.

(h) Let L = C2. Then

m
(
SC2,1,F,FT

∆
(G,b)

)
=


2 , if F ∼= F00;

3 , if F ∼= F01;

1 , if F ∼= F10;

2 , if F ∼= F11.

(i) Let L = {1}. Then

m
(
S1,1,F,FT∆

(G,b)

)
=


1 , if F ∼= F00;

2 , if F ∼= F01;

2 , if F ∼= F10;

3 , if F ∼= F11.

Proof The proof of this proposition closely follows the arguments in Propositions 4.3
and 5.3: Part (a) is similar to 4.3(a) and 5.3(a); Part (b) to 4.3(b); Part (c) to 4.3(c) and
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5.3(c); Part (d) to 5.3(b); Part (e) to 5.3(d); Part (f) to 4.3(d); and Part (g) to 5.3(e). Since
m
(
S1,1,F,FT∆

(G,b)

)
= l(kGb), see [3, Corollary 8.23], Part (i) follows from [7, Section 3].

Finally to prove Part (h), let L = C2. If F ∼= F0i, for i = 1, 2, then there are two F-
isomorphism classes of subgroups of D isomorphic to C2. Let C2

∼= P 6 D be a non-central
subgroup and Z = Z(D) be the center of D. Then P and Z are the representatives of these
classes. By Theorem 2.2, one has m

(
SC2,1,F,FT∆

(G,b)

)
= l
(
kCG(P )eP

)
+ l
(
kCG(Z)eZ

)
. We

may choose P to be fully F-centralized. Then the group-block pair (CG(P ), eP ) has a
defect group CD(P ) ∼= V4 and the trivial fusion system. It follows that l

(
kCG(P )eP

)
= 1.

The group-block pair (CG(Z), eZ) has a defect group D and the fusion system F ∼= F0i.
It follows from [7, Section 3] that l

(
kCG(Z)eZ

)
= l(kGb) and the result follows in this

case. If F ∼= F1i, for i = 1, 2, then there is only one F-isomorphism class of subgroups
of D isomorphic to C2. The center Z = Z(D) is a fully F-centralized representative of
the F-isomorphism class. It follows that (CG(Z), eZ) has a defect group D and the fusion
system F0i. By Theorem 2.2, one has m

(
SC2,1,F,FT∆

(G,b)

)
= l
(
kCG(Z)eZ

)
and the result

follows again from [7, Section 3].

The same reasoning as at the end of Section 4 shows now that Proposition 6.3 implies
the part of Theorem 1.1 concerning semidihedral defect groups. The proof of Theorem 1.1
is now complete.
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