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Abstract

For any block of a finite group over an algebraically closed field of characteris-
tic 2 which has dihedral, semidihedral, or generalized quaternion defect groups, we
determine explicitly the decomposition of the associated diagonal p-permutation func-
tor over an algebraically closed field F of characteristic 0 into a direct sum of simple
functors. As a consequence we see that two blocks with dihedral, semidihedral, or
generalized quaternion defect groups are functorially equivalent over F if and only if
their fusion systems are isomorphic. It is an open question if two blocks (with ar-
bitrary defect groups) that are functorially equivalent over F must have isomorphic
fusion systems. The converse is wrong in general.
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1 Introduction

Let p be a prime, k an algebraically closed field of characteristic p, and F an algebraically
closed field of characteristic zero.

In [3], the notion of a diagonal p-permutation functor over an arbitrary commutative
ring R was defined. It is by definition an R-linear functor from the category RppkA to
the category of R-modules. The objects of the category RppkA are finite groups, and
a morphism from H to G is an element in RT*(kG,kH) := R ®z T*(kG,kH), where
TA(kG, kH) is the Grothendieck group (with respect to split exact sequences) of the
category of finitely generated p-permutation (kG,kH )-bimodules which are projective as
left kG-modules and as right kH-modules. Composition of morphisms is induced by the
tensor product of bimodules. We refer the reader to [2] and [3] for further notations
and definitions related to this category. Diagonal p-permutation functors over R form an
abelian and R-linear category.



A group-block pair (over k) is by definition a pair (G, b) of a finite group G and a block
idempotent b of kG. A defect group of such a pair (G, b) is a defect group of b in G, and
the fusion system of (G, b) is the fusion system of b in kG. To every group-block pair (G, b)
(over k), one can assign a diagonal p-permutation functor RT(%;J)) over R, see [3]. Two
group-block pairs (G, b) and (H, ¢) are called functorially equivalent over R if the functors
RT(%,’b) and RT(%’C) are isomorphic.

If R =T, it was shown in [3] that the category of diagonal p-permutation functors
is semisimple, that two group-block pairs, which are functorially equivalent over [F, have
isomorphic defect groups, and that for a given finite p-group D there are only finitely many
functorial equivalence classes of group-block pairs with defect group isomorphic to D.

In [8] it was shown that if (G,b) and (H,c) are group-block pairs with cyclic defect
groups or 2-blocks of defect 2 or 3, then (G, b) and (H, ¢) are functorially equivalent over [F
if and only if they have isomorphic fusion systems. The goal of this paper is to show a
similar result for group-block pairs with dihedral, generalized quaternion and semidihedral
defect groups.

1.1 Theorem Let (G,b) and (H,c) be group-block pairs with dihedral, generalized
quaternion, or semidihedral defect groups. Then, (G,b) and (H,c) are functorially equiv-
alent over F if and only if they have isomorphic fusion systems.

Theorem 1.1 is proved by computing explicitly the multiplicities of the simple functors
occurring as direct summands in the various block functors in each case, see Proposi-
tions 4.3, 5.3 and 6.3. In this sense, we prove much more than what is necessary to prove
Theorem 1.1. We believe that these explicit formulas will be useful in the future.

The saturated fusion systems for 2-groups of dihedral, generalized quaternion, and
semidihedral type are known and described in [1, Example 1.3.8]. Up to isomorphism,
there exist precisely three such fusion systems on dihedral groups, two on the generalized
quaternion group of order 8, three on those of order 2" > 16, and four on semidihedral
groups. All of them are realized by principal blocks of various groups. For details see
Sections 4-6, where Theorem 1.1 is proved separately for these three types of groups.
Together with the results in [8], Theorem 1.1 implies the following corollary.

1.2 Corollary Let (G,b) and (H,c) be group-block pairs such that kGb and kHc have
tame representation type. Then (G,b) and (H,c) are functorially equivalent over F if and
only if they have isomorphic fusion systems.

It is an open question if arbitrary group-block pairs that are functorially equivalent
over F must have isomorphic fusion systems. The converse is wrong in general, since there
exist blocks with isomorphic fusion systems but different numbers of simple module, while
the number of simple modules is determined by the functorial equivalence class over F,
see [6] or [1, Example IV.5.42].



The paper is arranged as follows. In Section 2 we recall some relevant results on
diagonal p-permutation functors and in Section 3 we prove some results on multiplicities
of simple functors in block functors that are specific to the defect groups at hand. In
Sections 4-6 we prove the main result for the three types of defect groups mentioned
above.

2 Preliminaries

We recall some definitions and results from [3] that are relevant for this paper. Recall
that k is an algebraically closed field of characteristic p > 0 and that [ is an algebraically
closed field of characteristic zero.

2.1 (a) A pair (P,u) where P is a p-group and u € Aut(P) is an automorphism of p’-order
(i.e., of order not divisible by p) is called a D®-pair. In this case we write P(u) for the
semidirect product P x (u). We say that two D®-pairs (P,u) and (Q,v) are isomorphic
if there exists a group isomorphism f: P{u) — Q(v) such that f(u) is Q(v)-conjugate
to v. We denote by Aut(P,u) the group of automorphisms of the D*-pair (P,u) and by
Out(P,u) the quotient Aut(P,u)/Inn(P(u)), see [3, Notation 6.8].

(b) Let G and H be finite groups and let b and ¢ be block idempotents of kG and kH,
respectively. We say that the pairs (G,b) and (H,c) are functorially equivalent over F,
) are isomorphic,
see [3, Definition 10.1]. Here, FIp,, = FT*(—,kG) o [kGb] = FT*(—,kGb). By [3,
Lemma 10.2], the pairs (G, b) and (H,c) are functorially equivalent over I if and only if
there exist w € FT2(kGb,kHc) and o € FT?(kHc, kGb) such that

if the corresponding diagonal p-permutation functors FT(AG’b) and JFT(%I

w-go=[kGb inFT?(kGb,kGb) and o-qw=[kHc] in FT?(kHc, kHc).

(c) Recall from [3, Corollary 6.15] that the category of diagonal p-permutation functors
over [F is semisimple. Moreover, the simple diagonal p-permutation functors Sy, v, up
to isomorphism, are parametrized by the isomorphism classes of triples (L, u, V'), where
(L,u) is a D®-pair and V is a simple FOut(L, u)-module, each up to isomorphism.

(d) Since the category of diagonal p-permutation functors over F is semisimple, the
functor FT’ (AG’b) is a direct sum of simple diagonal p-permutation functors Sy, , . Hence,
two group-block pairs (G,b) and (H, ¢) are functorially equivalent over F if and only if, for
any triple (L,u, V'), the multiplicities of the simple functor Sz, v in FT(AGM and IFT(%LC)
are the same. In the next Theorem we recall a formula for these multiplicities and we will
need to recall the following notation.

(e) Let (G,b) be a group-block pair and let (D, ep) be a maximal (G, b)-Brauer pair
(over k). For any subgroup P < D, let ep be the unique block idempotent of kCq(P)
with (P,ep) < (D,ep). Moreover, let F be the fusion system of (G,b) with respect to



(D,ep) and let [F] be a set of F-isomorphism classes of objects of F, i.e., subgroups of
D.

Let (L,u) be a D?-pair. For P < D we set Ppep)(L,u) to be the set of group
isomorphisms 7: L — P satisfying mouon~! € Autz(P). Thus, Pp.,)(L,u) = 0 unless
P = L. The set P(pe,)(L,u) is an (Ng(P,ep), Aut(L, u))-biset via

g-mp=ligomOoQp,

for g € Nag(P,ep), T € Ppepy(L,u) and ¢ € Aut(L,u), where i, denotes the conjugation
automorphism x — gzg~'. We denote by [P(p.,)(L,u)] a set of Ng(P,ep) x Aut(L,u)-
orbits of P(pe,y(L,u).

For m € P(pep)(L,u), the stabilizer in Aut(L, u) of the Ng (P, ep)-orbit of 7 is denoted
by Allt(L, u)m Thus,

Aut(L, u) = {p € Aut(L,u) | ror ! € Autx(P)}.

(P’eP ﬂT)

Finally, for P < D, (L,u), and 7© € P(pc,)(L,u) as above, we de-
note by PIM(k:Cg(P)ep,u) the set of isomorphism classes of projective indecom-
posable kCg(P)ep-modules that are fixed under mur~ 1. Further, we denote
by FPIM(kCg(P)ep,u) its F-linear span.  Note that Aut(L, w) oy
PIM(kC¢(P)ep,u) via U - ¢ := U, where g € Ng(P,ep) such that igmp = .

acts on

2.2 Theorem ([3, Theorem 8.22(b)]) Let (G,b) be a block, (L,u) a D*-pair and V an
irreducible FOut(L, u)-module. The multiplicity of the simple diagonal p-permutation
functor S, v in the functor IFT(% b) is equal to the F-dimension of

a5 D FPIM(kCq(P)ep, u) DAut(Ln) ey V
Pe[F] WE[P(P,eP)(L7u)]

Note that by Theorem 2.2, T(AG b) is isomorphic to a direct sum of only finitely many
simple functors St . Moreover, if Sr, v is isomorphic to a direct summand of IE*‘T(%;’b)

then L is isomorphic to a subgroup of a defect group of (G, b). In addition to the notation
introduced in 2.1, we’ll need the following.

2.3 Notation Let (G, b) be a group-block pair.

(a) For a D®-pair (L,u) and an irreducible FOut(L,u)-module, we denote by
m(SL,uy, IFT(%J))) the multiplicity of St ., v as a direct summand of FT(AGJ)).

(b) By I(G,b), we denote the number of isomorphism classes of simple kGb-modules.
By [3, Corollary 8.23], one has I[(G,b) = m(S’LLF,FT(%’b)).

(c) Let (D, ep) be a maximal (G, b)-Brauer pair and F the fusion system of (G, b) with
respect to (D,ep). Following [1], for any P < D, we set Outz(P) := Autp(P)/Inn(P)
and Outp(P) = Autp(P)/Inn(P). Note that Outp(P) < Outz(P) < Out(P).



3 More on multiplicities of simple functors in block functors

The results in this section will be used to calculate the multiplicities of the simple functors
in block functors in Sections 4-6.

3.1 Remark We list the possible triples (L,u,V) parametrizing simple diagonal p-
permutation functors over F for some p-groups L, cf. 2.1(a),(c).

(a) For L =1, the only possible triple is (1,1,TF).

(b) Let L be a cyclic group of order 2. Then Aut(L) is an abelian 2-group. It follows
that the possible triples (L, u, V') are of the form (L, 1,V’), where V' is an FAut(L)-module.
Note that V' has F-dimension one.

(c) Let L be a Klein-four group. Then Aut(L) = Out(L) = Ss. Up to isomorphism, the
only D?-pairs with first entry L are (L, 1) and (L, ug), where ug € Aut(L) is an element
of order 3. We have Out(L, 1) & S3, Aut(L,up) = Ay, and Out(L,up) = 1. Hence, the
only simple functors arising from L = Vj are Sy, 1., Sv, 1,F_, Svi,1,vs, and Sy, 4, F, Where
F_ is the sign representation of S5 and V5 is an irreducible F.S3-module of dimension 2.

(d) Let L = Qs be the quaternion group of order 8. Then Aut(L) = S; and Out(L) =
Ss3. Let up € Aut(L) be an element of order 3. Up to isomorphism, the only DA pairs with
first entry L are (L, 1) and (L, ug). We have Out(L,1) = Out(L) = S5 and Out(L, ug) = 1.
Thus, the simple functors arising from L = Qg are Sgq 1., SQs,1,F_» SQs,1,V5, and Sog uo,F,
where F_ and V; are as in Part (c).

(e) Let L be a dihedral group of order 2" > 8 or generalized quaternion or semidihedral
of order 2" > 16. Then Out(L) is an abelian 2-group determined in more detail in
Sections 4-6. Thus, the simple functors arising from L are all of the form Sy 1y, where
V is a one-dimensional FOut(L)-module.

3.2 Remark For the following it is useful to be aware of the following fact. Let f: G — H
be an isomorphism of groups. Then f induces isomorphisms Aut(f): Aut(G) — Aut(H)
and Out(f): Out(G) — Out(H) in the obvious way, which of course depend on f. In
contrast, the isomorphisms between the module categories pyq(zyMod — 4y Mod and
ouw(m)Mod — ouy@yMod, induced by restriction along the isomorphisms Aut(f) and
Out(f), respectively, do not depend on the choice of f, up to natural isomorphism.

The following lemmas will be used in Sections 4—6.

3.3 Lemma ([8, Lemma 2.4]) Let (G, b) be a group-block pair, let (D,ep) be a maximal
(G, b)-Brauer pair and let F denote the fusion system of (G,b) with respect to (D,ep).
Then, for any simple FOut(D)-module V', one has

m(SD:LV’FT(%"b)) = dimp (VOut].-(D)) :

where VOUF(D) denotes the Outz(D)-fixed points of V.



The following lemma is a generalization of Lemma 3.3

3.4 Lemma Let (G,b) be a group-block pair, let (D, ep) be a maximal (G, b)-Brauer pair
and let F denote the fusion system of (G, b) with respect to (D, ep). Further, suppose that
L is a p-group and that for every subgroup P < D with P = L one has l(kCg(P)ep) =1
Then, for every simple FOut(L)-module V', one has

(SL 1,V FT(G b) Z dlmF (VOUt}-( )) y
L~PeF]
where V' is viewed as an Out(P)-module via any isomorphism L = P, cf. Remark 3.2.
Proof The proof is similar to the proof of Lemma 3.3 given in [3]. We add the details
for convenience. Let P < D. Note that P p.,)(L,1) is the set of all isomorphisms from

L to P. Suppose that L = P and let 7: L — P an isomorphism. Then Aut(L,1) acts
transitively on P(p.,)(L, 1) and we may choose [P(p,,)(L,1)] = {r}. With this, we have

Aut(L, 1)(Pe = ={p € Aut(L) | mpr~t € Autr(P)} = n ' Autz(P)r
Since l(kCg(P)e p) =1, the formula in Theorem 2.2 implies that
m(Sp1v, FT(G b) Z dimz (F @ppr1aut-(P)r) V)
L~Pe(F]
= Z dimF(V ~lAutz (P)m Z dimp (Voutf(P))
L2~Pe[F] L~Pe[F)

0

3.5 Lemma Let (G,b) be a group-block pair, let (D, ep) be a maximal (G, b)-Brauer pair
and let F denote the fusion system of (G,b) with respect to (D, ep). Furthermore, let L
be a Klein-four group, let (L, u) be a D™-pair and V a simple FOut(L, u)-module. Finally,
suppose that L = P < D.

(a) If Out£(P) = Cy then (cf. Remark 3.1(c))

1, if (u,V)=(1,F);
. 0, if(u,V)=(1,F_);
d1m1F< @ F BAut(Low) e V) =1 i EU V; _ El V. )>
E[P(pep) (L)) ’ ’ »r2h

0, if(u,V) = (up,F).

(b) If Outx(P) = S3 then (cf. Remark 3.1(c))

(1, if (u,V) = (1,F);
. 0, if(u,V)=(1,F_);
dlmF( D Pt V) o jfEu V; - E1 V))
TE€[P(prep) (Lw)] ’ ’ 20

1, if(u,V) = (up,F).




Proof We may assume that P = L and make use of Remark 3.1(c).
(a) Suppose that Outz(P) = Cy. If u = 1 then

Ppep)(Lyu) = Aut(L) = S3 and  [Ppe,)(L,u)] = {id}.
This implies that

Aut(L,1) ={peAut(L) | ¢ € Autr(P)} = Cs,

(P,EP,id)

and hence that

dimF< SV N — v> = dimz (F ®pc, V) = dimp (V) .
7I'6[7>(P,ep)(L7uH

The latter is equal to 1 if V = F or V 2 V5 and equal to 0 otherwise. For u = wug of
order 3, we have

Ppep)(L,u) = {p € Aut(L) | wupp ' € Autx(P)} =0,

and the result follows.
(b) Suppose that Outz(P) = S3 and let uw = 1. Then we have again

P(P,ep)(Lvu) = AUt(L) =53 and [P(P,ep)(L)u)] = {ld}7 .
This implies that

Aut(L, u) ={pecAut(L) | p € Autr(P)} = Ss,

(P,ep,id)

and hence that
dimF< B Foaw R V> = dimp(F @, V) = dimg(V5).
ﬂ'e[,P(P,EP)(L’U)]

The latter is nonzero only if V = F and the result follows if u = 1. If u = ug has order 3
then
Ppep)(Lyu) = {p € Aut(L) | uop ! € Autz(P)} = Aut(L) = S5,

and we may choose [P(p,)(L,u)] = {id}. Since Out(V4,uo) = 1, we obtain
dimg ( ) L v) = dimp(F @ F) = 1
7"'G[IP(P,EP)(L?u)]

as desired. U

The proof of the following lemma is similar to the proof of Lemma 3.4 and is left to
the reader.



3.6 Lemma Let (G,b) be a group-block pair, let (D, ep) be a maximal (G, b)-Brauer pair
and let F denote the fusion system of (G, b) with respect to (D, ep). Furthermore, let L be
a quaternion group of order 8, let (L, u) be a D®-pair and V a simple FOut (L, u)-module.
Finally, suppose that L =2 P < D.

(a) If Out£(P) = Cy then (cf. Remark 3.1(d))

L, if(uw,V)=(1,F);
. 0, if(u,V)=(1,F_);
dun]F( @ F ®Aut(L,u)m V) = L EU V; _ El v ))
TE€[P(prep) (Lw)] ’ ’ 20

0, if(u, V)= (up,F).

(b) If Outz(P) = S3 then (cf. Remark 3.1(c))

1, if(u,V)=(L,F);
. 0, if(u,V)=(1,F_);
d1m1p< QP2 T — V) =30 Eu V; _ El V))_
TE€[P(pep)(Lu)] ’ ’ 20

1, if(u,V) = (uo,F).

4 Blocks with dihedral defect groups

Throughout this section we assume that (G, b) is a group-block pair with defect group D
isomorphic to Daon = (s,1 | 2 =2 = 1,tst = s~1), the dihedral group of order 2", with
n > 3. First we recall a result that holds for dihedral groups of arbitrary order.

4.1 Remark Let m > 3 be an integer and let Do, = (s,t | s™ =t> = 1,tst = s~ 1) be a
dihedral group of order 2m. It is well-known and easy to see that the automorphisms of
Do, are of the form f, 5, where f,5(s) = s” and f, () = ts®, with integers a, b such that
ged(m,b) = 1. It is easily verified that the map

Z)mZ x (Z/mZ)* — Aut(Dam), (@,b) = fap,

is an isomorphism, where the semidirect product is formed with respect to the action of
b on a by multiplication in the ring Z/mZ. Moreover, the inner automorphism given by
conjugation with t's* is equal to J—ok,(—1yt» k.1 € Z, so that under the above isomor-
phism, Inn(Dan) corresponds to the subgroup 2(Z/mZ) x {£1 + mZ}. Thus, the above
isomorphism induces an isomorphism

Z)27 x ((Z/mZ)* /{x1 +mZ}), if m is even;

Out(DZm) = {(Z/mZ)X/{il + mZ}, if m is odd.

In particular, Out(Ds,,) is abelian and
Out(Don) X Z/2Z x ((Z/2"Z)* /{£1 + 2" 'Z})

is an abelian 2-group.



4.2 (a) Following [4, Section 1], we define the following subgroups of Dan:
S 1= ($m)  with sp, := s2nim71,
a cyclic subgroup of order 2, for 0 < m < n —1, and
W = (spm_1,t) and W2 := (s,_1,st) for1<m<n—1.

Then the subgroups Dan, Sy, (0 < m < n—1)and W}, (i € {1,2} and 1 < m < n—1), form
a complete set of representatives of the conjugacy classes of subgroups of Dan. Moreover,
Wi (for i = 1,2 and 3 < m < n — 1) is isomorphic to a dihedral group of order 2™ and
Wi, for i = 1,2 are isomorphic to Klein-four groups. For i = 1,2 and 2 < m < n — 2, one
has Np,. (W) = Wi,

(b) Up to isomorphism, there exist three saturated fusion systems on D (see [1, Ex-
ample 3.8] and [5, Theorem 5.3]). Following [1] we denote by Fyo (resp. Fo1, Fi1) the
fusion system with three (resp. two, one) isomorphism classes of involutions. They can
be realized, respectively, as the fusion systems of the groups D, of the principal blocks of
PGL(2, ) for any odd prime power g such that 2(q¢ + 1) = 2" or 2(q¢ — 1)2 = 2", and
of the principal block of PSL(2, ¢) for any odd prime power ¢ such that (¢ + 1)2 = 2™ or
(g —1)2 = 2". One has

Aut}'OO(WQi) =y, Autr, (W21) =y, Aut]:01(W22) = S3, and Autr,, (WQZ) = Ss,

for ¢ = 1,2. For each of the three fusion systems, the essential subgroups of D are precisely
the subgroups isomorphic to Klein-four groups.

The following theorem generalizes the result in [8] from n =3 to n > 3.

4.3 Proposition Let (G,b) be a group-block pair, let (D, ep) be a maximal (G, b)-Brauer
pair and let F denote the fusion system of (G,b) with respect to (D,ep). Suppose that
the defect group D of (G, b) is isomorphic to Dan, the dihedral group of order 2.

(a) Let L = Dan. Then, for any simple FOut(L)-module V, one has
m(Spav, FIg,) = 1.

(b) Let L = Dom with 3 < m < n — 1 and let ¢ € Out(L) be the class of the
automorphism of L that is the identity on the cyclic subgroup of order 2™~ and switches
the two conjugacy classes of non-central involutions of L. Then, for any simple FOut(L)-
module V', one has
2, ife€ker(V);

Sp1v,FTR ) = (
m(Spa,v (G,b)) {07 if € ¢ ker(V)

(¢) Let L = Cym be a cyclic group of order 2™ with 2 < m < n—1, and let V' be a simple
FOut(L)-module. Moreover, let ¢ € Out(L) be the class of the inversion automorphism
x— 2! of L. Then

1, ife€ker(V);
m(Sp1v,FT2 ) =<’ ’
(Seav:Ficy) {o, if e ¢ ker(V).

9



(d) Let L = V, and let ay, a2, a3, as denote the multiplicities of Sy, 1r, Sv,1F_,
SVi1,Vas SViueF I ]FT(AG p)» Tespectively (see Remark 3.1(c)). Then

(2,0,2,0), if F = Foo;
(al,CLQ,CL3,CL4) - (270)171)7 lffngM
(2,0,0,2), if F= Fip.

(e) Let L = Cy. Then

3, if F =2 ]:00,‘
m(Sc, 1w, FTiGy) = 2, if F = Fou;
1, if F=F.
(f) Let L = {1}. Then
L, if F= Foo;
m(s{l},l,F7]FT(%;’b)) = 2, IfFe f01;
3, if F=F.

Proof (a) Since Aut(D) is a 2-group (see Remark 4.1), the Sylow axiom for saturated
fusion systems implies that Outz(D) = 1. Moreover, V is 1-dimensional, since Out(D) is
an abelian group by Remark 4.1. The result follows now from Lemma 3.3.

(b) We will use Lemma 3.4. We first note that there are precisely two F-isomorphism
classes of subgroups of D isomorphic to Dom. In fact there are two conjugacy classes
of subgroups of D isomorphic to Dom. Moreover, they are not fused in F, since the
Klein-four groups are the only F-essential subgroups of D, and if they were fused they
would have to be conjugate by an element in D, by Alperin’s fusion theorem. Now let
Dom = P < D. Again, by Alperin’s fusion theorem, Autxz(P) is given by conjugations
with elements from Np(P). But Np(P) is isomorphic to a dihedral subgroup of D of
order 2™*1. Thus, Outz(P) = C3. The non-trivial element of Outz(P) is the class of
the conjugation automorphism with any element of Np(P) which is not in P. We may
choose this element to be an element of order 2". Note that this element centralizes
the cyclic subgroup of order 2™~ of P. Therefore, under any isomorphism P = L the
corresponding element of L will again centralize the cyclic subgroup of L of order 2™~ 1. It
follows that the class of the conjugation with this element is equal to € as described in the
result. Finally, by choosing P to be fully F-centralized, we can see that Cp(P) = Z(D)
is a defect group of the group-block pair (Cg(P),ep). Since Z(D) = Z(P) is central in
C(P), we obtain [(kCe(P)ep) = 1. The result now follows from Lemma 3.4, and the
fact that V' is one-dimensional, since Out(L) is abelian.

(c) We will use again Lemma 3.4. First note that there is a unique subgroup P of
D isomorphic to L. Therefore P is fully F-centralized and Cp(P) is a defect group of

10



(Ca(P),ep). But Cp(P) is the cyclic subgroup of order 2"~ ! of D. Since it is cyclic and
p = 2, the block kC¢(P)ep is nilpotent and we obtain {(kCq(P)ep) = 1. Moreover, by
Alperin’s fusion theorem (the only F-essential subgroups of D are isomorphic to Klein-four
groups), we obtain Outz(P) = Np(P)/PCp(P) = C and that the non-trivial element
of Outz(P) is given by the inversion automorphism of P. The result now follows from
Lemma 3.4.

(d) We will use Lemma 3.5. By Alperin’s fusion theorem, the two conjugacy classes of
subgroups of D isomorphic to Vj are also the F-isomorphism classes. We may choose Vy =
P < D to be fully F-centralized. Then Cp(P) = P is a defect group of (Cs(P),ep) and
it is central in C(P). Thus, [(kCe(P)ep) = 1. The result now follows from Theorem 2.2
and Lemma 3.5.

(e) For any subgroup P of D of order 2, one has I[(kCg(P)ep) = 1 by the last para-
graph before Proposition 4B and by Proposition 4F of [4]. Lemma 3.4 implies that
m(S’CQ’LF,IFT%,b)) is equal to the number of F-isomorphism classes of subgroups of D
of order 2. The result follows.

(f) Since m(SLLF,FT(%’b)) = [(kGD), see [3, Corollary 8.23], the result follows imme-
diately from [4, Theorem 2]. U

If a simple functor Sy, 1y occurs as a direct summand of IF T(AG,b) then L is isomorphic to
a subgroup of the defect group D of (G, b). Therefore, Proposition 4.3 covers all possible
simple functors. Since the multiplicities computed in Proposition 4.3 only depend on
the fusion system of (G,b) and since non-isomorphic fusion systems produce different
multiplicities of Sy 1, this proves the part of Theorem 1.1 concerning dihedral defect
groups.

5 Blocks with generalized quaternion defect groups

Throughout this section we assume that (G,b) is a group-block pair with defect group
D isomorphic to Qan = (s, | 2 = = st = 57 20 = t2), the generalized
quaternion group of order 2", with n > 4. The case n = 3 has been already established
in [8].

5.1 Remark It is well-known and an easy verification that every automorphism of Qon
(for n > 4) is of the form f, 4, where f,,(s) = s® and f,,(t) = ts® for some a,b € Z with
ged(2,b0) = 1. This induces a group isomorphism

Z/2' L% (2/27'2) = Aut(Q), (@,B) = fus,

where in the semidirect product the multiplicative group (Z/2"'Z)* acts by multiplica-
tion on the additive group Z/2"~!Z. It is easy to see that conjugation with an element
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t'sk, for integers k,l, is equal to f_2k7(_1)z. This implies that under the above isomor-
phism Inn(Q2r) corresponds to the subgroup 27/2"'Z x {41 + 2"71Z} and that the
above isomorphism induces an isomorphism

Out(Qan) X Z/2Z x ((Z/2"'Z)* /{x1 +2"'Z}).
In particular, Aut(Q2an) is a 2-group and Out(Q2n) is an abelian 2-group.

5.2 (a) Similar to 4.2, we define the following subgroups of Qan:

S 1= (8m)  with sp, := sQnimil,

a cyclic subgroup of order 2 for 0 < m < n — 1, and

T! := (s 1,t) and T2 := (s, 1,st) for2<m<n—1.

m

Then the subgroups Qan, Sy, (0 <m < n—1) and T¢, (i € {1,2} and 2 < m < n—1), form
a complete set of representatives of the conjugacy classes of subgroups of (Qon. Moreover,
T: (for i = 1,2 and 4 < m < n — 1) is isomorphic to a generalized quaternion group of
order 2™ and T?f, for © = 1,2 are isomorphic to quaternion groups of order 8. For i = 1,2
and 2 < m < n — 2, one has Ng,, (T,) = Tan.

(b) Up to isomorphism, there exist three saturated fusion systems on D (see [1, Ex-
ample 3.8] and [5, Theorem 5.3]). Following again [1] we denote by Foo (resp. Foi, Fi1)
the fusion system with three (resp. two, one) isomorphism classes of cyclic groups of or-
der 4. They can be realized, respectively, as the fusion systems of the groups D, of the
principal blocks of 2.PGL(2, ¢) for any odd prime power ¢ such that 2(q + 1)2 = 2"~ ! or
2(q —1)2 = 2™, and of the principal block of SL(2, q) for any odd prime power ¢ such that
(g+1)2=2""1or (g—1)3 =2"L. One has

Autz,, (Th) = Co, Autg, (T4) = Cy, Autr, (T3) = S;, and Autr, (Ts) = S3,

for ¢ = 1, 2. For each of the three fusion systems, the essential subgroups of D are precisely
the subgroups isomorphic to quaternion groups of order 8.

5.3 Proposition Let (G,b) be a group-block pair, let (D,ep) a maximal (G,b)-Brauer
pair and let F denote the fusion system of (G,b) with respect to (D,ep). Suppose that
the defect group D of (G,b) is isomorphic to Qan, the generalized quaternion group of
order 2" with n > 4.
(a) Let L = Qon. Then, for any simple FOut(L)-module V, one has
A Y
m(SL,LV,FT(G@) =1.
(b) Let L = Qam with 4 < m < n — 1 and let € € Out(L) be the class of the
automorphism of L that is the identity on the cyclic subgroup of order 2™~ and switches
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the two conjugacy classes of subgroups of order 4 of L not contained in the cyclic subgroup
of order 2™~!. Then, for any simple FOut(L)-module V', one has

2, ife€ker(V);

Sy, FT2, ) =
m(Spa,v (G,b)) {0, if € ¢ ker(V).

(¢) Let L = Cym be a cyclic group of order 2™ with3 < m < n—1, and let V' be a simple
FOut(L)-module. Moreover, let € € Out(L) be the class of the inversion automorphism
x>z~ of L. Then

1, ifeeker(V);

SeavsFTe ) =
m(Spa,v (G,b)) {07 if € ¢ ker(V).

(d) Let L = Qg and let a1, ag, a3, as denote the multiplicities of Sgg1r, SQg1,F_,
SQs,1,Ves SQguoF il IFT(AG p)» Tespectively (see Remark 3.1(d)). Then

(2’0)2)0)7 lfngO(),
(a17a27a37a4) - (2707 17 1)7 lff = -FOI;
(2,0,0,2), if F= Fiy.

(e) Let L = Cy. Then

3, if F = .7:00,'
Scuar_FTi ) =0 and m(Sc, 17, FTR ) =<2, if F= Fo;
m( Cy,1,F_» (G,b)) - an m( Cy,1,F, (GJ;)) - 27 if F = fOla
1, if F= F.
(f) One has
1, if F = Foo;
m(S11p, FT(AQ,,)) =m(Sc,1r, IFT(%;J))) =2, ifFFy:
3, Iif F = Fi.

Proof (a) Since the automorphism group Aut(D) is a 2-group (see Remark 5.1), the
Sylow axiom for saturated fusion systems implies that Outz(D) = 1. Moreover, since
Out(D) is an abelian group (again by Remark 5.1), the module V' has dimension one. The
result follows now from Lemma 3.3.

(b) We will use Lemma 3.4. By arguments similar to the proof of Proposition 4.3(b),
one shows that there are precisely two JF-isomorphism classes of subgroups of D isomor-
phic to Qam. Let Qam = P < D. Since the quaternion subgroups of order 8 are the
only F-essential subgroups of D, Alperin’s fusion theorem implies that Autz(P) is given
by conjugations with elements from Np(P). But Np(P) is isomorphic to a generalized
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quaternion subgroup of D of order 2™*!. Thus, Outrz(P) = Cy. The non-trivial element
of Outz(P) is the class of the conjugation automorphism with any element of Np(P)
which is not in P. We may choose this element to be an element of order 2. Note
that this element centralizes the cyclic subgroup of order 2™~ of P. Therefore, under
any isomorphism P 22 L the corresponding element of L will again centralize the cyclic
subgroup of L of order 2™~ 1. It follows that the class of the conjugation with this element
is equal to € as described in the result. Finally, by choosing P to be fully F-centralized, we
can see that Cp(P) = Z(D) is a defect group of the group-block pair (Cg(P),ep). Since
Z(D) = Z(P) is central in Cg(P), we obtain [(kCq(P)ep) = 1. The result now follows
from Lemma 3.4, and the fact that V' is one-dimensional, since Out(L) is abelian.

(c) The proof of this part is similar to the proof of Proposition 4.3(c). One shows
that there is a unique subgroup P of D isomorphic to L, that kCq(P)ep is nilpotent
and hence [(kCg(P)ep) = 1, and that Outz(P) = Np(P)/PCp(P) = C, with the non-
trivial element given by the inversion automorphism of P. The result follows again from
Lemma 3.4.

(d) We will use Lemma 3.6. By Alperin’s fusion theorem, the two conjugacy classes of
subgroups of D isomorphic to (Jg are also the F-isomorphism classes. We may choose Qg =
P < D to be fully F-centralized. Then Cp(P) = P is a defect group of (Cs(P),ep) and
it is central in C;(P). Thus, [(kCe(P)ep) = 1. The result now follows from Theorem 2.2
and Lemma 3.6.

(e) Let P be a subgroup of D isomorphic to Cy. We may choose P to be fully F-
centralized. Then (Cg(P), ep) has a cyclic defect group Cp(P). Since p = 2, it follows that
kCq(P)ep is nilpotent and we obtain [(kCe(P)ep) = 1. Moreover, Outr(P) = Out(P).
Lemma 3.4 implies that m(SC4,1,IF7 , FT(%’I))) is equal to zero and that m(Sc%LHr,IFT(AG’b))
is equal to the number of F-isomorphism classes of subgroups of D isomorphic to C4. The
result follows from Remark 5.2.

(f) The center Z = Z(D) of D is the unique subgroup of D isomorphic to Cj.
Therefore Z is fully F-centralized and D is a defect group of (Cg(Z),ez). More-
over, the fusion system of (Cx(Z),ez) is isomorphic to F. It follows from [7, Sec-
tion 3] that [(kC(Z)ez) = 1(kGb). Theorem 2.2 and [3, Corollary 8.23] imply that
m(Scy, 15 FIi ) = U(kCa(Z)ez) = 1(kGb) = m(Suy1p FT(,). The result follows
again from [7, Section 3]. U

The same reasoning as at the end of Section 4 shows now that Proposition 5.3, together
with the result in [8] for Qg, implies the part of Theorem 1.1 concerning generalized
quaternion defect groups.

6 Blocks with semidihedral defect groups

Throughout this section we assume that (G,b) is a group-block pair with defect group D
isomorphic to SDon = (s,t | s =12 = 1,t 1st = ¥ "1, the semidihedral group of
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order 2", with n > 4.

6.1 Remark In the group SDon as above, for any integer a, the order of ts® is equal to
2 if a is even and to 4 if a is odd. Thus any automorphism of SDsn must map ¢ to an
element of the form ts* with even a. It is probably well-known and easy to verify that
every automorphism of SDs» is of the form f,, with f,p(s) = s® and fap(t) = ts* with
integers a, b such that a is even and b is odd. One obtains an isomorphism

27,/2" 17 % (Z/2" 1 Z)* — Aut(SDan), (@, b) = fap,

where in the semidirect product, the multiplicative group (Z/2"'Z)* acts by multi-
plication on the additive group 27Z/2""'Z. It is straightforward to verify that con-
jugation with the element t's®, for integers k and [, is equal to the automorphism
Jen—2_2)k,(2n—2_1)- Since the element (272 — 2) + 27717 generates the additive group
27,/2"17Z, the group Inn(SDar) corresponds under the above isomorphism to the subgroup
27,/2"17 x4 (2772 — 1 4 2"717Z). Thus, the above isomorphism induces an isomorphism

Out(SDgn) = (Z/2" 1 Z)* /(272 — 14 2"717) .

In particular, Aut(SDan) is a 2-group and Out(SDan) is an abelian 2-group. Note that
the element 2772 — 1 + 2"7!Z has order 2 in the multiplicative group (Z/2"1Z)*. Tt
is well-known that the latter group is the direct product of the subgroups generated by
the classes of the elements —1 and 5. Moreover, the class of 5 generates a subgroup of
index 2 in (Z/2" 1Z)*. Thus, (Z/2" 1Z)* has precisely 3 elements of order 2, namely
the classes of —1, and 2”2 £ 1. One can show that in the direct product decomposition
(Z)2"17)* = (—=142""1Z) x (5+2"27Z) the element 2”2 —1 has non-trivial components
in both factors. In fact, it is clearly not contained in the first factor and every element
of the second factor is congruent to 1 modulo 4. This implies that Out(SDan) is a cyclic
group of order 273, generated by the class of the automorphism fos-

6.2 (a) Similar to 4.2(a) and 5.2(a), we define the following subgroups of S Dan:

S i= (8m) with s, := 32nim71,

a cyclic subgroup of order 2" for 0 <m < n —1, and
T}n = (Sm-1,t) forl<m<n—1 and T% = (Sm—1,8t) for2<m<n—1.

Then the subgroups SDon, S;y (0 <m <n—1), T, 1<m<n—1)and T2 (2<m <
n — 1), form a complete set of representatives of the conjugacy classes of subgroups of
Q2n. Moreover, TL for 3 < m < n —1 (resp. T2, for 4 < m < n — 1), is isomorphic to
a dihedral group (resp. generalized quaternion group) of order 2™, T32 is isomorphic to a
quaternion group of order 8, T3} is isomorphic to a Klein-four group and T% is isomorphic
to a cyclic group of order 4. For i = 1,2 and 2 < m < n— 2, one has Ngp,. (T%,) = T?, ..
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(b) Up to isomorphism, there exist four saturated fusion systems on D (see [1, Exam-
ple 3.8] and [5, Theorem 5.3]). Following again [1] we denote these fusion systems by F;;,
for i,j € {0,1}, where i = 0 (resp. i = 1) means the fusion system with two (resp. one)
isomorphism classes of involutions and j = 0 (resp. j = 1) means the fusion systems with
two (resp. one) isomorphism classes of cyclic groups of order 4. The fusion system Foq,
Fo1, Fio and Fi1 can be realized, respectively, as the fusion system of the group D, of the
principal blocks of GL(2,q) for any odd prime power g such that (¢ 4 1)2 = 272, of the
principal blocks of PSL(2, ¢?) x Ca, the non-split extension by the field automorphism, for
any odd prime power g such that (¢4 1)2 = 2”72, and of the principal blocks of PSL(3, q)
for any odd prime power ¢ such that (¢ + 1)2 = 2"72. One has

Autx,, (Ty) = Cy, and Autr,; (Ty) = S3 for j = 1,2;
and
Autr, (T3) = Cy, and Autg, (T3) = Sz for i =1,2.

For each of the four fusion systems, the essential subgroups of D are precisely the subgroups
isomorphic to Klein-four groups and to quaternion groups of order 8.

6.3 Proposition Let (G,b) be a group-block pair, let (D,ep) a maximal (G,b)-Brauer
pair and let F denote the fusion system of (G,b) with respect to (D,ep). Suppose that
the defect group D of (G,b) is isomorphic to SDaon, the semidihedral group of order 2.

(a) Let L = SDyn.  Then, for any simple FOut(L)-module V, one has
m(SL,l,V,FT(%;7b)) =1.

(b) Let L = Dym for 3 < m < n—1 and let e € Out(L) be the class of the automorphism
of L that is the identity on the cyclic subgroup of order 2™~! and switches the two
conjugacy classes of non-central involutions of L. Then for any simple FOut(L)-module
V', one has
1, ifee€ker(V);

Seav, FTy) = (
m(Sp1v (G,b)) {0, if € ¢ ker(V)

(c) Let L = Cam be a cyclic group of order 2™ with 3 < m < n—1, and let V' be a simple
FOut(L)-module. Moreover, let e € Out(L) be the class of the inversion automorphism
x> 2! of L. Then
1, ife€ker(V);

SLav,FIg,) =
m(Sp1,v (G,b)) {0, if e ¢ ker(V).

(d) Suppose that n > 4. Let L = Qom with4 < m < n — 1 and let ¢ € Out(L) be the
class of the automorphism of L that is the identity on the cyclic subgroup of order 2™~*
and switches the two conjugacy classes of subgroups of order 4 of L not contained in the
cyclic subgroup of order 2™~1. Then, for any simple FOut(L)-module V, one has

1, ife€ker(V);

Spav, FTE ) =
m( L1,V (G,b)) {0, if e ¢ ker(V).
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(e) Let L = Qg and let ai, as, ag, as denote the multiplicities of Sggz 1, SQg1,F_
SQs1,Vas SQg.uoF I IFT(% p)» Lespectively (see Remark 3.1(d)). Then

(1,0,1,0), if F = Foo;
(1707170)7 lffgfl())
(a1,a2,a3,a4) = Y
( ), lff:f()l,'
( )

1,0,0,1), if F=Fy.

(f) Let L = Vy and let a1, a, a3, a4 denote the multiplicities of Sy, 1 ¥, Sv,1F_,
SVi1,Vas SViu,F ID IFT(% p)» Tespectively (see Remark 3.1(c)). Then

(1’0’170)’ lffg‘FOO,
(1707071)7 1f-7:§-7:10;
(al,GQ,a37a4) = .
(1,0,1,0), if F = Foi;
(1,0,0,1), if F = Fi;.
(g) Let L = Cy. Then

2, if F = Foo;
2 if F = flo‘
m (.S, JFT2.,) =0 and m(S JFT2 ) =<7 ’
( C4,L,F— (G,b)) ( Cy,1,F (G,b)) 17 _lff o fol,
1, ifF=Fn.

(h) Let L = Cy. Then

2, if F = Fo;
3, if F= Fo;
A , 01,
m(Scy1,5 Fl(cy)) = 1, if F = Fio;
2

L ifF .
(i) Let L = {1}. Then

1, if F = Foo;
2, if F=Fou;
2, Iif F = Fo;
3, IfF=F.

m(Sl,l,FvFT(AG,b)) =

Proof The proof of this proposition closely follows the arguments in Propositions 4.3
and 5.3: Part (a) is similar to 4.3(a) and 5.3(a); Part (b) to 4.3(b); Part (c) to 4.3(c) and
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5.3(c); Part (d) to 5.3(b); Part (e) to 5.3(d); Part (f) to 4.3(d); and Part (g) to 5.3(e). Since
m(SLLF,}FT(AG’b)) = I(kGbD), see [3, Corollary 8.23], Part (i) follows from [7, Section 3].
Finally to prove Part (h), let L = Cy. If F = Fy;, for i = 1,2, then there are two F-
isomorphism classes of subgroups of D isomorphic to Cs. Let Co =2 P < D be a non-central
subgroup and Z = Z(D) be the center of D. Then P and Z are the representatives of these
classes. By Theorem 2.2, one has m(Sc%l,F,IFT(AG’b)) = 1(kCa(P)ep) +1(kCa(Z)ez). We
may choose P to be fully F-centralized. Then the group-block pair (Cg(P),ep) has a
defect group Cp(P) =V, and the trivial fusion system. It follows that I (kCq(P)ep) = 1.
The group-block pair (Cz(Z),ez) has a defect group D and the fusion system F = Fy,.
It follows from [7, Section 3] that I(kCq(Z)ez) = I(kGb) and the result follows in this
case. If F & Fy;, for i = 1,2, then there is only one F-isomorphism class of subgroups
of D isomorphic to Co. The center Z = Z(D) is a fully F-centralized representative of
the F-isomorphism class. It follows that (Cs(Z), ez) has a defect group D and the fusion
system Fy;. By Theorem 2.2, one has m(SCZ’LF,FT(AG’b)) = l(kCg(Z)eZ) and the result
follows again from [7, Section 3. U

The same reasoning as at the end of Section 4 shows now that Proposition 6.3 implies
the part of Theorem 1.1 concerning semidihedral defect groups. The proof of Theorem 1.1
is now complete.
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