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Abstract

Let k& be an algebraically closed field of characteristic p > 0 and let F be an alge-
braically closed field of characteristic 0. Recently, together with Bouc, we introduced
the notion of functorial equivalences between blocks of finite groups and proved that
given a p-group D, there is only a finite number of pairs (G, b) of a finite group G and
a block b of kG with defect groups isomorphic to D, up to functorial equivalence over
F. In this paper, we classify the functorial equivalence classes over F of blocks with
cyclic defect groups and 2-blocks of defects 2 and 3. In particular, we prove that for
all these blocks, the functorial equivalence classes depend only on the fusion system
of the block.
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1 Introduction

Throughout of the paper, k denotes an algebraically closed field of characteristic p > 0 and F
denotes an algebraically closed field of characteristic zero. The local-global phenomena in modular
representation theory of finite groups asserts that the global invariants of blocks are determined by
the local invariants. There are many outstanding conjectures that revolves around this principle.
One such conjecture is Puig’s finiteness conjecture which asserts that given a finite p-group D,
there are only finitely many pairs (G, b) of a finite group G and a block idempotent b of kG with
defect group D, up to splendid Morita equivalence (Conjecture 6.4.2 in [L18]). Splendidly Morita
equivalent blocks have isomorphic source algebras, and hence Puig’s conjecture, if true, means
that all the global invariants of a block are determined by the defect group up to finitely many
possibilities.

In [BY22], together with Bouc, we introduced the notion of functorial equivalences over F
between blocks of finite groups, weaker than splendid Morita equivalence, and proved the following
finiteness theorem.

1.1 Theorem [BY22, Theorem 10.6] Given a finite p-group D, there is only a finite number of
pairs (G, b), where G is a finite group and b is a block idempotent of kG with defect group D, up
to functorial equivalence over F.

To prove Puig’s conjecture, it suffices to show that for a given p-group D every functorial
equivalence class of blocks with defect D is a union of finitely many splendid Morita equivalence
classes. Therefore, it is a natural question to classify the functorial equivalence classes of blocks with



a given defect group D. In this paper, we start the program of classifying the functorial equivalence
classes of blocks and consider the cases where D € {Cpn, Vi, Qs, Dg, Co x Cy X Co,Co x Cy}. We
summarize our result as follows. For a finite group G we denote by by(G) the principal block of

kG.

1.2 Theorem Let G be a finite group and let b be a block idempotent of kG with a defect group
D.

(a) The functorial equivalence classes over F of blocks with cyclic defect groups depend only on
the inertial quotient of the blocks. In particular, for blocks with cyclic defect groups the functorial
equivalence classes over F coincide with the splendid Rickard equivalence classes.

(b) If D = Vj, then the pair (G,b) is functorially equivalent over F to either (Vy, 1) or (A4, 1).
In particular, for blocks with Klein four defect groups the functorial equivalence classes over F
coincide with the splendid Rickard equivalence classes.

(¢c) If D = Qs, then the pair (G,b) is functorially equivalent over F to either (Qs,1) or
(SL(2,3),bo(SL(2,3)).

(d) If D = Dg, then then the pair (G, b) is functorially equivalent over F to (Ds, 1), (S4,b0(S4))
or (PSL(3,2),bo(PSL(3,2)).

(e) If D = Cyx Cy x Cy, then the pair (G, b) is functorially equivalent over F to (Ca x Co x Ca, 1),
(Ag x Co,1), (SL2(8),b0(SL2(8))) or (Ji,bo(J1)). In particular, for bloks with defect groups
Cy x Cy x Cs the functorial equivalence classes over F coincide with the isotypy classes.

(f) If D = Cy x Cy, then the pair (G,b) is functorially equivalent over F to (Co x C4,1).

Theorem 1.2 follows from the more precise Theorems 3.1, 4.1, 5.1, 6.1, 7.1 and 8.1. The
following corollary is immediate from Theorem 1.2.

1.3 Corollary Functorial equivalence classes over F of blocks of finite groups with defect groups
D € {Cpn, V4, Qs,Dg,Cy x Cy x Ca,Cy x C4} depend only on the fusion system of the blocks.

We also find the composition factors of the diagonal p-permutation functors arising from all
these blocks except when D = Cy x Cy x Cs.

In Section 2 we recall diagonal p-permutation functors and functorial equivalences of blocks.
We consider blocks with cyclic defect groups in Section 3, with Klein four defect groups in Section 4,
with Qg defect groups in Section 5, with Dg defect groups in Section 6, with Cy x Cy x Cy defect
groups in Section 7 and with Cy x Cy defect groups in Section 8.

2 Preliminaries

(a) Let (P,s) be a pair where P is a p-group and s is a generator of a p’-group acting on P. We
write P(s) := P x (s) for the corresponding semi-direct product. We say that two pairs (P, s) and
(Q,t) are isomorphic and write (P, s) & (Q, t), if there is a group isomorphism f : P(s) — Q(t) that
sends s to a conjugate of t. We set Aut(P, s) to be the group of automorphisms of the pair (P, s)
and Out(P, s) = Aut(P, s)/Inn(P(s)). Recall from [BY20] that a pair (P, s) is called a D*-pair, if
Cisy(P) = 1. See also [BY22, Lemma 6.10].

(b) Let G, H and K be finite groups. We call a (kG, kH)-bimodule M a diagonal p-permutation
bimodule, if M is a p-permutation (kG, kH )-bimodule whose indecomposable direct summands have



twisted diagonal vertices as subgroups of G x H, or equivalently, if M is a p-permutation (kG, kH )-
bimodule which is projective both as a left kG-module and as a right kH-module. We denote
by T (kG,kH) the Grothendieck group of diagonal p-permutation (kG,kH)-bimodules. For a
commutative ring R, we also set RT (kG,kH) := R®zT*(kG,kH). If b is a block idempotent of
kG and c a block idempotent of kH, then we define T (kGb, kHc) and RT*(kGb, kHc) similarly.

If M is a diagonal p-permutation (kG,kH)-bimodule and N a diagonal p-permutation
(kH, kK )-bimodule, then the tensor product M ®pp N is a diagonal p-permutation (kG,kK)-
bimodule. This induces an R-linear map

- : RT?(kG,kH) x RT*(kH,kK) — RT*(kG,kK) .

(c) Let Rpps denote the following category:

e objects: finite groups.

o Morgy,,a(G, H) = RT*(kH, kG).

e composition is induced from the tensor product of bimodules.

o Idg = [kG].
An R-linear functor from RppkA to gMod is called a diagonal p-permutation functor over R. To-
gether with natural transformations, diagonal p-permutation functors form an abelian category

A

]:Rppk'
(d) Let G be a finite group and b a block idempotent of kG. Recall from [BY22] that the block
diagonal p-permutation functor RTé , is defined as

RTE, : Rpp — rMod
H +— RT*(kH, kG) @pc kGb.

If H is another finite group and if ¢ is a block idempotent of KH, we say that the pairs
(G,b) and (H,c) are functorially equivalent over R, if the corresponding diagonal p-permutation
functors RT&, and RT{, are isomorphic in Fg, ~ ([BY22, Definition 10.1]). By [BY22,
Lemma 10.2] the pairs (G,b) and (H,c) are functorially equivalent over R if and only if there
exist w € RT?(kGb,kHc) and o € RT®(kHc, kGb) such that

w-go=[kGb in RT*(kGb,kGb) and o -yw=[kHc in RIT*(kHc kHc).

Note that this implies that a p-permutation equivalence between blocks implies a functorial equiv-
alence over Z and hence a functorial equivalence over R, for any R.

(e) Recall from [BY22] that the category ]-"ﬁ)pk is semisimple. Moreover, the simple diagonal
p-permutation functors St v, up to isomorphism, are parametrized by the isomorphism classes
of triples (L, u,V) where (L,u) is a D®-pair, and V is a simple FOut(L, u)-module (see [BY22,
Sections 6 and 7] for more details on simple functors).
(f) Since the category prp is semisimple, the functor FTG p is a direct sum of simple diagonal
p permutation functors St , . Hence two pairs (G,b) and (H ¢) are functorially equivalent over
F if and only if for any triple (L, u, V'), the multiplicities of the simple diagonal p-permutation
functor S, v in ]F‘Té , and IFTI%,C are the same. We now recall the formula for the multiplicity of
Spuyv in FTE,. See [BY22, Section 8] for more details.



Let (D,ep) be a maximal kGb-Brauer pair. For any subgroup P < D, let ep be the unique
block idempotent of kCq(P) with (P,ep) < (D, ep) (see, for instance, [L18, Section 6.3] for more
details on Brauer pairs). Let also F; be the fusion system of kGb with respect to (D, ep) and let
[Fb] be a set of isomorphism classes of objects in Fy,.

For P € Fp, we set P(pyep)(L,u) to be the set of group isomorphisms 7 : L — P with
mi,m ! € Autg, (P). The set P(p.,y(L,u) is an (Ng(P, ep), Aut(L, u))-biset via

g TP =1igmp

for g € No(P,ep), m € Ppep)(L,u) and ¢ € Aut(L,u). We denote by [P(pe,)(L,u)] a set of
representatives of Ng(P,ep) x Aut(L,u)-orbits of P(p (L, u).

For m € [P(pepy(L,u)], the stabilizer in Aut(L,u) of the Ng(P,ep)-orbit of 7 is denoted by
Aut(L, u) 5~ One has

(Pep,m

Aut(L,u) {o € Aut(L,u) | mprn~t € Autx, (P)}.

(Pep,m) —
2.1 Theorem [BY22, Theorem 8.22(b)] The multiplicity of a simple diagonal p-permutation func-
tor Sp, v in the functor FTéb is equal to the F-dimension of

@ @ FPrOj(kePCG(P)v U) ®Aut(L,u)m Vv
Pe[Fo] m€[P(p,cp) (L u)]

Let G be a finite group. We denote by Qg , the set of pairs (P, s) where P is a p-subgroup of
G and s is a p’-element of Ng(P). The group G acts on Qg , via conjugation and we denote by
[Qa,p) a set of representatives of the G-orbits on Qg p.

If (P,s) € Qc.p, then the pair (P,3) := (PCysy(P)/C(s)(P),sC()(P)) is a D?-pair. Suppose
that (L,u) is another D?-pair isomorphic to (P,3). Then the isomorphism between the pairs
induces a group homomorphism from Ng(P,s) to Out(L,u), see [BY22, Section 7]. So, a simple
FOut(L, u)-module V' can be viewed as an FNg(P, s)-module via this homomorphism.

2.2 Theorem [BY22, Corollary 7.4] The multiplicity of a simple diagonal p-permutation functor
Sp.u.v in the representable functor FTZ is equal to the F-dimension of

@ VNc(P,s) ]

(P,5)€[Qa.p]
(P,5)=(L,u)
2.3 Notation Let G be a finite group and let b be a block idempotent of kG.
(a) We denote the multiplicity of a simple diagonal p-permutation functor S, v in ]P‘Té » by
Mult(Spu,v, FTE,).-
(b) We denote by [(kGb) the number of isomorphism classes of simple kGb-modules. By [BY22,
Corollary 8.23], one has Mult(SLLF,IFTGA)b) = l(kGD).

The following lemma will be used in Sections 5 and 6.

2.4 Lemma Let G be a finite group and let b be a block idempotent of kG with a defect group D.
Let (D, ep) be a maximal b-Brauer pair and let Fy, be the fusion system of b with respect to (D, ep).



Let Autz, (D) denote the image of Autz, (D) in Out(D). Then for any simple FOut(D)-module
V', we have

Mult(Sp,1,v, FTS,) = dimg (VW) ,
Proof One shows that
P(D,ep)(D,1) = Aut(D) and [Ng(D,ep)\Pp,ep)(D,1)/Aut(D)] = [idp].
Moreover,

Aut(D) = Autg, (D).

(D,ED,idD)
Since kCg(D)ep has a central defect group Z (D), it has a unique isomorphism class of simple
modules and hence

FProj(kCq(D)ep,1) = F.
Theorem 2.1 implies now that

Mult(SD,Lv,FTéb) = dimp (F ®Aut]:b(D) V) = dimp (VAUth(D)) = dimp (VAUtfb(D)) ,

as desired. U

3 Blocks with cyclic defect groups

Let GG be a finite group and let b be a block idempotent of kG with a cyclic defect group D. We will
give a decomposition of the functor IFTC% , in terms of the simple diagonal p-permutation functors.
We refer the reader to [L18, Chapter 11] for more details on blocks with cyclic defect groups. Let
(D,ep) be a maximal b-Brauer pair and let E = Ng(D,ep)/D be the inertial quotient of b. Then
for every b-Brauer pair (P,ep) < (D, ep) one has Ng(P,ep)/Cq(P) = E, see, for instance, [L18,
Theorem 11.2.1].

First of all, the multiplicity of S1,1r is equal to I(kGb) which is equal to |E| by [L18, Theo-
rem 11.1.3]. Assume now that L is a nontrivial cyclic p-group. Then Aut(L) is an abelian group and
hence one can show that for p’-elements u,u € Aut(L), the pairs (L, u) and (L, u) are isomorphic
if and only if © = «'. Moreover, Out(L,u) = Aut(L)/(u) is abelian.

Let P < D with P = L. We identify L with P and E with its image in Aut(P) under the map
E — Aut(P), s — is. Via these identifications we have E = Autr, (P).

For any p'-element u € Aut(P), we have

Aut(P), ifuekFE

Ppep) (P u) = {m € Aut(P)| Tium Tt =iy € Autg, (P)} = {@, otherwise .

If u ¢ E, then the simple functor Sy, ,, v is not a summand of IFTéb. If u € E, then Pip ) (P,u) =
Aut(P), and hence one can show that there is only one Ng(P,ep) x Aut(P, u)-orbit of Aut(P),
i.e., [Pp,ep) (P, u)] = [id]. Moreover, one has

Aut(P,u) ={¢ € Aut(P,u)|3g € Ng(P,ep),ig=¢} =E.

(P.ep,id)



Now since b is a block with cyclic defect group, by [L18, Theorem 11.2.1] the block idempotent
ep of kCg(P) is a nilpotent block, and so it has a unique simple module, up to isomorphism.
Therefore we have FProj(keCq(P),u) = F, and it follows that the multiplicity of the simple
functor Sp.,.v, for u € E, is equal to the F-dimension of the fixed points VZ. Since Out(P,u) is
abelian, the dimension of V is equal to one and hence V¥ is either zero or equal to V. We proved
the following.

3.1 Theorem Let G be a finite group and let b be a block idempotent of kG with a cyclic defect
group D and inertial quotient . Then

FT8, = |ElSi.r €D P &y Spuv -

1<PLDueE VeH“[Out(P,u)/E] mod
simple

3.2 Corollary Let G and H be finite groups. Let b be a block idempotent of kG and c a block
idempotent of kH with cyclic defect groups isomorphic to D. Then (G,b) and (H, ¢) are functorially
equivalent over F if and only if the inertial quotients of b and ¢ are isomorphic. In particular, kGb
and kH ¢ are splendidly Rickard equivalent if and only if (G, b) and (H, ¢) are functorially equivalent
over F.

Proof The first assertion follows from Theorem 3.1, and the second assertion follows from the
first one and [Ro98]. U

4 Blocks with Klein four defect groups

Let C denote a cyclic group of order 2 and let V4 denote a Klein-four group. Since Aut(Csy) = {1},
the functor S¢, 1 r is the unique simple functor, up to isomorphism, with parametrizing set (L, u, V')
where L = Cs.

Let u € Aut(Vy) = Sym(3) be an element of order 3. One shows that a D®-pair (L, u) with
L =V} is isomorphic to either (Vj,1) or (V4,u). One can also show that Out(Vy,u) = {1}. Let
F_ and V5 denote a non-trivial one dimensional module and a two dimensional simple module of
FOut(Vy) = FSym(3), respectively.

4.1 Theorem Let b be a block idempotent of kG with defect groups isomorphic to V,. Then one
of the following occurs:

(i) The block b is nilpotent and (G, b) is functorially equivalent over F to (Vy,1). In this case,
one has

FIG, = S11F ® 35c,18 ® Svi1F © Sva 15 © 251,15 -
(ii) The pair (G,b) is functorially equivalent over F to (A4, 1). In this case, one has
]FTGA,Z, 23511 FrP S 1F RSV F B SV, 1F 1 D25y, uF-

In particular, the functorial equivalence class of (G, b) depends only on the inertial quotient of b.



Proof It is well-known that if b is a block idempotent of a finite group G with defect groups
isomorphic to Vy, then kGb is splendidly Rickard equivalent to either kVy or kA4. Indeed, by
[CEKL12], kGb is splendidly Morita equivalent to kVy, kA4 or kAsby(As), and by [R96, Section 3|
kA4 and kAsbg(As) are splendidly Rickard equivalent. It follows that (G,b) is functorially equiv-
alent over F to either (Vy,1) or (A4,1). One can find the multiplicities of the simple functors in
]F‘T‘é4 and ]F‘Ti easily using Theorem 2.2. U

5 Blocks with Qg defect groups

Let Cy4 denote a cyclic group of order 4. Since Aut(Cy) = Out(Cy) = Cs is a 2-group, the functors
Scyar and Sc, 1 r_ are the only simple functors, up to isomorphism, with a parametrizing set
(L,u,V) with L & Cy, where F and F_ denote the trivial and the non-trivial simple FOut(Cj)-
modules.

Let Qg be a quaternion group of order 8. Let u € Aut(Qs) = Sym(4) be an element of
order 3. One shows that a D®-pair (L,u) with L 2 Qg is isomorphic to either (Qg, 1) or (Qg,u).
One can also show that Out(Qs,u) = {1}. Indeed, one can show that Aut(Qs x (u)) = Sym(4)
and Inn(Qg x (u)) = Alt(4). Since Qg x (u) has two conjugacy classes of 3-elements, but only
one automorphism class of 3-elements, it follows that Aut(Qs,u) = Inn(Qs x (u)) and hence
Out(Qs,u) = {1}. This implies that the simple functors S, 1.7, SQg,1,F_ s SQs,1,v> a0d Sgg . F are
the only simple functors, up to isomorphism, with parametrizing set (L, u, V) with L 2 Qs, where
F_ and V5 denote the nontrivial one dimensional and the two dimensional simple FOut(Qg) =
FSym(3)-modules, respectively.

5.1 Theorem Let b be a block idempotent of kG with defect groups isomorphic to Qg. Then one
of the following occurs:

(i) The block b is nilpotent and (G, b) is functorially equivalent over F to (Qs,1). In this case,
one has

FTéb =815 D Sc1FD3Sc, 18 D SQe1,F D SQ 151 D 25061,V -

(ii) The pair (G,b) is functorially equivalent over F to (SL(2,3),by), where by is the principal
2-block of SL(2,3). In this case, one has

FTE), = 3511F 350,18 ® Scu1F D SQs 1 F D SQeuk-

Proof Let (D,ep) be a maximal b-Brauer pair and for any P < D, let (P, ep) denote the unique
b-Brauer pair with (P,ep) < (D,ep). Let also F denote the fusion system of b with respect to
(D,ep). Up to isomorphism, there are two fusion systems on Qs.

First, assume that F is isomorphic to the inner fusion system on @g. Then the block idempotent
b is a nilpotent block and hence by [BY22, Theorem 9.2], (G, b) is functorially equivalent over F to
(s, 1). Using Theorem 2.2 one can easily show that

]FTéb = FTSB = S511F D Scy,1,F D3Sc,,1F D SQs,1.F B SQs, 17 D250s,1,15 -

Now assume that F is isomorphic to the non-inner fusion system on Qs. Let Z denote the center
of D. By [O75, Theorem 3.17], one has [(kGb) = I(kC(Z)ez) = 3. Thus, Theorem 2.1 implies
that

Mult(S1,1,6, FTG,) = Mult(Sc,,1,5, FTE,) = 3.



We now find the multiplicities of the simple functors Sc, 1r and Sc, 17 in FTéb. Let P be
a subgroup of D isomorphic to Cy. Note that all subgroups of D of order 4 are F-isomorphic.
The block kCg(P)ep has a cyclic defect group Cp(P) = P and so it follows that it has a unique
isomorphism class of simple modules. Indetify P with L = Cy4. One has

P(pep)(Ca,1) = Aut(Cy) = Co
and
[Na(P,ep)\P(p,ep)(Ca,1)/Aut(Cy)] = [id] .

It follows that Aut(Cy) = Aut(Cy). These imply that

MUlt(SC4,1,F,]FT§b) — dimp F® = 1
and that
Mult(Sc, 15, FTE,) = dimp(F_)“? = 0.

We finally consider the case L = (QJg. Since Autr, (D) = Out(Qs) = Sym(3), Lemma 2.4 implies
that

Mult(Sqq,1,5,FT5,) =1 and  Mult(Sgu 1, FTE,) = Mult(Sg, 1,v.,FTE,) = 0.
By Theorem 2.1, the multiplicity of Sqg . F in FTé p is equal to the cardinality of the set
[NG(D,ep)\P(p.ep)(Qs, u)/Aut(Qs, u)] -
One shows that P(qy cq,)(@s, u) = Aut(Qs) and since Autr, (Qs) = Aut(Qs), it follows that
Mult(Sgq,ur FTS,) = 1.

This completes the proof. U

6 Blocks with Dy defect groups

Let Dg be a dihedral group of order 8. Since Aut(Ds) is a 2-group and since Out(D) = Cs, the
functors Spg,1,r and Spg,1,7_ are the only simple functors, up to isomorphism, with parametrizing
set (L,u, V) with L & Dg, where IF and F_ denote the trivial and the nontrivial simple FOut(D) &
FC5-modules, respectively.

6.1 Theorem Let b be a block idempotent of kG with defect groups isomorphic to Dg. Then one
of the following occurs:

(i) The fusion system of b is the inner fusion system on Dg. In this case, b is nilpotent and
(G,b) is functorially equivalent over F to (Dg,1). We have

FTéb =S FrB35, 17 @S, 1 Fr B 25,17 B 2Sv,1,v, D SDs,1F B SDg1F_y -



(ii) The fusion system of b is the non-inner non-simple fusion system on Dg. In this case, (G, b)
is functorially equivalent over F to (S4,bg), where by is the principal 2-block of S4. We have

]FTGA,Z, = 2511F D2Sc,,1,F B Scy1p D2Sv, 18 D Svi1,ve D Svy,uf D Spg, 18 ® Spg, 1, -

(iii) The fusion system of b is the simple fusion system on Dg. In this case, (G,b) is functorially
equivalent over F to (PSL(3,2),by), where by is the principal 2-block of PSL(3,2). We have

FT55 22 351,18 ® Scu1.F © Scu1r ® 25V, 1.F @ 25V, 0 ® Spe,1F @ Spg 15, -

Proof Let (D, ep) be a maximal b-Brauer pair and for any P < D, let ep denote the unique block
idempotent of kCq(P) with (P,ep) < (D, ep). Let F denote the fusion system of b with respect
to (D, ep).

Note that up to isomorphism, there are three fusion systems on Dg. We denote by Fqo the
inner fusion system; by JFp; the non-inner non-simple fusion system; by /i1 the simple fusion
system. Note that Fog = Fp(D), Fo1r = Fp(Sym(4)) and Fi11 = Fp(PSL(3,2)).

By [B74], we have I(kGb) = 1, if F = Foo; I(kGb) = 2, if F = For; I(kGb) = 3, if F = Fq;.
This determines the multiplicity of S; 1 in all cases.

Let C5 be a subgroup of D order 2. Up to G-conjugation, we can assume that C5 is fully
F-centralized, and so the block kCx(C2)ec, has a defect group Cp(Cs) which is isomorphic to D
or V4. In both cases, one can show that [(kCg(C2)ec,) = 1. Therefore, Theorem 2.1 implies that
the multiplicity of S, 15 is equal to the number of F-isomorphism classes of objects isomorphic
to Cy. Hence

3, if F = Foo
Mult (Sc, 15, FTE,) =< 2, if F = Fy
1, if F=Fy.

Let Cy be the cyclic subgroup of order 4 of D. The block idempotent kC(C4)ec, has a central
defect group Cy4 and so [(kC¢(Cy)ec,) = 1. Moreover, in all cases one has Aut z(Cy) = Aut(Cy) =
C5. Therefore, Theorem 2.1 implies that

Mult (Sc,,17, FTE,) = dimp F?2 =1 and Mult (Sc, 17, FT&,) = dimg F”> = 0.

Let X and Y be the subgroups of D isomorphic to V4. Note that X and Y are not F-
conjugate. We use the convention that Autz(X) = Autz(Y) = Cy if F = Foo; Autz(X) =2 Cy
and Autz(Y) = Sym(3) if F = For; Autz(X) = Autz(Y) = Sym(3) if F = Fi;. In all cases,
the blocks kCq(X)ex and kCq(Y )ey has central defect groups X and Y, respectively, and hence
l(kOG(X)ex) = l(kCG(Y)ey) =1.

Now let J € {X,Y}. First assume that Autz(J) = Cy. Then, one has

[Na(J,e1)\Py,e,)(Va, 1) /Aut(Vy)] = [id]
and
Aut(%;)m ={p e Aut(Vy)|¢p =1i4,9 € Na(J,es)} = Cs.
It follows that the F-dimension of

@ FProj(kesCa(J)) @aut(va)
TE[P (e ;) (Va)]

V=F®q, V2V

(J,eg,m)



is equal to one for V =F and V = V5 and zero for V = F_;. Moreover one has
Plreny(Va,u) = {¢ € Aut(Vy) : ¢ind™" € Autz(J)} =0

since ¢i, ¢! has order 3.
Next, suppose that Autz(J) = Sym(3). We have

[NG(J,e5)\P(,e,)(Va, 1) /Aut(Vy)] = [id]
and
Aut(%)m ={¢p € Aut(Va)| ¢ =i4,9 € Ng(J,es)} = Sym(3).

Therefore, the F-dimension of

@ FProj(ke;Cq(J)) D Aut(Vy)
T€[PG ., (Va)]

V=F ®Sym(3) V= VSym(S)

(Jyey,m)

is non-zero only for V = F. Moreover,
Pirey)(Va,u) = {¢ € Aut(Vy)| ¢iyd ™" € Autz(J)} = Aut(Vy) = 55
and
[Na(J,e0)\P,e,)(Vas u) /Aut(Vy, u)] = [id].

Thus, the F-dimension of

@ FProj(ke;Ca (), u) @aut(vi)gormy F
71'6[73876‘])(‘/4,u)]

is equal to one. These show that the multiplicities of Sy, 1r, Sv,,1,7_, Svy,1,, and Sy, . F in IFTéb
are as claimed.
Finally, since in all cases we have Aut (D) = Inn(D), Lemma 2.4 implies that

Mult (Spy,1,8, FTE ) = Mult (Spy e, FTE,) = 1.

This completes the proof. U

7 Blocks with (5 x C5 x (5 defect groups

Let b be a block idempotent of kG with defect groups isomorphic to D = Cy x Cy x Cs. Let
FE be the inertial quotient of b. Then E has order 1, 3, 7 or 21. Let also ¢ be the block idem-
potent of kNg(D) which is in Brauer correspondence with b. Then there exists a complex of
p-permutation (kGb, kNg(D)c)-bimodules inducing a stable splendid Rickard equivalence between
kGb and kNg(D)c by [Ro01, Theorem 6.10] (see also [KKL12, Theorem 21.1] for a generalization).
Taking the alternating sum of the classes of the terms of the complex we get a stable p-permutation
equivalence and hence a stable functorial equivalence over F between b and c. Since F determines
the number of simple modules in the block, it follows from [BY23, Theorem 1.2(i)] that there exists
a functorial equivalence between b and c. So we can assume that D is normal in G and hence b
has a source algebra k(D x E). This shows that E determines the functorial equivalence class over
I of b. Therefore we have the following.
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7.1 Theorem Let b be a block idempotent of kG with defect group isomorphic to Cs x Co x Cy
and let E be the inertial quotient of b. Then one of the following occurs:

(i) |E] =1 and (G, b) is functorially equivalent over F to (Ca x Cy x Ca,1).
(ii) |E| = 3 and (G, b) is functorially equivalent over F to (A4 x Cq,1).
(iii) |E| =7 and (G, b) is functorially equivalent over F to (SL2(8),bo(SL2(8)).

(iv) |E| =21 and (G, b) is functorially equivalent over F to (J1,bo(J1)).
In particular, for blocks with Cy x Cy x Cy defect groups, functorial equivalence classes over F
coincide with isotypy classes.

8 Blocks with (5 x (4 defect groups

For completeness, we consider the blocks with defect groups Cy x Cy. Since Aut(Cy x Cy) = Dg, the
functors Sc, xc,,1,v are the only simple functors with parametrizing set (L, u, V') with L = Cy x Cy,
where V € {F,F;,Fy,F3, V5} is a simple FDg-module.

8.1 Theorem Let b be a block idempotent of kG with defect groups isomorphic to Co x Cy. Then
(G, b) is functorially equivalent over F to (Cy x Cy,1). Moreover, one has

Mult (S1,1,5,FT5,) =1, Mult (Sc, 15, FTE,) = 3,
Mult (Sc,1,v,FT§,) =2 for V € {F,F_},
Mult (S, 1,v,FTE,) = dimp V' for V € {F,F_, Va},

Mult (Sc,xca1,v, FTE,) = dimp V. for V € {F,Fy,Fy, F3, Vo} .

Proof Since Cy x Cy has no automorphism of odd order, the block kGb is nilpotent and hence
by [BY22, Theorem 9.2], (G, b) is functorially equivalent over F to (Cy x Cy,1). One can find the
multiplicities using Theorem 2.2. U
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