FIBERED p-BISET FUNCTOR STRUCTURE OF THE FIBERED
BURNSIDE RINGS

OLCAY COSKUN AND DENIZ YILMAZ

ABSTRACT. We determine the composition factors of the A-fibered Burnside func-
tor kB4 for p-groups over a field k of characteristic ¢ with ¢ # p and cyclic fiber
group A. We also show that, in this case, kB4 is uniserial.

1. INTRODUCTION

In representation theory, it is of the utmost importance to study group actions on
sets. For the simplest case, one may consider the action of a finite group G on a finite
set X. This action reveals the theory of Burnside rings. Considering the common
features shared by Burnside rings and representation rings, Dress [9] and Green [11]
introduced Mackey functors to give a unified treatment of these objects.

There are two ways to let two groups act on a set X. First, suppose that we have
two groups GG and H. By considering the action of G on the left and the action of H
on the right, we may let G x H act on X. In this case, the set X is called a (G, H)-
biset and this leads us to the theory of biset functors introduced by Bouc in [5].
One of the most important applications of biset functors, among many others, is the
final determination of the structure of the Dade group by Bouc [7]. Also in [6], Bouc
and Thevénaz studied the Burnside functor of p-groups. They obtained that the
Burnside functor of p-groups over a field of characteristic zero has two composition
factors, one of which is the functor of torsion-free part of the Dade group and the
other one is the functor of rational representations.

As a second way of letting two groups act on a set, we may consider the action of
A x G on X where G is a finite group and A is an abelian group acting on X freely.
Since the A-action is free, such an action of A x G on X can be considered as G
acting on the A-fibers and in this case, the set X is called an A-fibered G-set. These
objects were introduced by Dress in [10] and studied by Boltje [3] and Barker [1].

In [4], Boltje and the first author combined these two notions and introduced
A-fibered (G, H)-bisets. Our aim in the present paper is to extend the results of
Bouc and Thevénaz on Burnside functors and to determine the composition factors
of the A-fibered Burnside functor kB“ of p-groups over a field k of characteristic
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q with ¢ # p and a cylic fiber group A. To be more precise, we show that in this
case, the functor kB4 is uniserial with composition factors parameterized by sets of
elementary abelian p-groups depending only on the prime p and the characteristic g,
and not on the particular fiber group A.

As in the case of the (ordinary) biset functor of the Burnside functor, when ¢ = 0,
the fibered Burnside functor kB4 has only two composition factors. One of the
factors can be identified with a subfunctor of the functor of complex characters. The
other factor has the cyclic group C, as its minimal group, but we are unable to
identify it with a natural construction.

In Section 2, we review the theory of fibered bisets and fibered biset functors from
[4], together with some specializations to the case of abelian groups. In the next
section, we introduce fibered Burnside rings, recall the idempotent formula for its
primitive idempotents form [1] and determine the action of basic fibered bisets on
these idempotents. Our main results regarding the structure of the fibered Burnside
functors are contained in the last section.

2. FIBERED BISETS AND FIBERED BISET FUNCTORS

In this section, we recall basic theory of fibered bisets from [4] and specialize
certain results to the case of abelian groups with sufficiently large fiber groups.

2.1. Fibered bisets. Let GG be a finite group, A be an abelian group and X be a
set. We call X an A-fibered G-set if X is an A x G-set such that the action of A
is free with finitely many orbits. We denote by gset? the category of A-fibered G-
sets. Here the morphisms are given by A x G-equivariant functions. The operation
of disjoint union of sets induces a coproduct on gset! and we denote by B4(G)
the Grothendieck group of this category with respect to disjoint unions. The group
BA(G) is called the A-fibered Burnside group and it was first introduced, in a more
general way, by Dress in [10].

The basic objects in gset?® with respect to disjoint union are the transitive ones.
We say that an A-fibered G-set is transitive provided that the G-action on the set of
A-orbits is transitive. It is easy to show that there is a bijective correspondence be-
tween the isomorphism classes [X] of transitive A-fibered G-sets and the G-conjugacy
classes of pairs (U, ¢) where U is a subgroup of G and ¢ : U — A is a group ho-
momorphism. The bijection is given by associating X to (U, ¢) if U is the stabilizer
of some A-orbit in X and U acts on this A-free orbit via ¢. We call the pair (U, ¢)
corresponding to X the stabilizing pair of X. We denote by M(A) the set of all
such pairs (U, ¢), and write [U, ¢|g for the isomorphism class of the A-fibered G-set
with the stabilizing pair (U, ¢).

If H is another finite group, we write gset4 for the category of A-fibered G' x H-
sets. By the usual convention, we regard any object in this category as an A-fibered
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(G, H)-biset. We also regard any A-fibered biset as an operator and, in this case, we

write [GXH ] instead of [U, ¢|gxy. With this notation, any ordinary biset [GXTH} is

Ug
regarded as an A-fibered biset as [GUXf{ ] where 1 denotes the trivial homomorphism

sending any element of U to the identity element of A.

Further let K be another finite group, X an A-fibered (G, H)-biset and Y an A-
fibered (H, K)-biset. We define the tensor product X @45 Y of X and Y as the set
of A-free orbits of the usual amalgamated product X x 45 Y of the bisets X and Y.
Recall that X x 45 Y is the set of A x H- orbits in X x Y under the A x H-action
given by

(a7h) ’ (SC,:I/) = (1’ ’ (a717h71>7 (Cl, h) ’ y)
for any (a,h) € Ax H and (z,y) € X xY. We denote the A x H-orbit containing the
pair (z,y) by (z,ap y). Then the group A acts on the set X X5 Y via a- (z,agy) =
(a-x,any) = (z,ag a-y). Given an A-free A x H-orbit (z,45 y), we denote its image
in the subset X @4y Y by 2 ®ay y or simply by x ® y, when there is no risk of
confusion. With this notation, X ®45 Y becomes an A-fibered (G, K)-biset via

(g:0) - (z@y) - k=(g9-a x)®(y-k)
forg € G,a € Aand k € K. We introduce further notation to determine the product
of two transitive A-fibered bisets.

Given a pair (U, ¢) € Mgxu(A), the subgroup U determines the following datum:
Let P = p;(U) and @ = po(U) be the first and the second projections of U. Let
also K = k1(U) = p(UN (G x 1)) and L = k(U) = po(UN (1 x H)). Then we
have that K < P and L < Q. Moreover the groups P/K and /L are isomorphic
and a canonical isomorphism 7 : /L — P/K is determined by the subgroup U via
n(hL) = gK if (g, h) € U. Conversely, if a quintuple (P, K, 7, L, Q) where K<IP < G
and L<4Q < H andn : Q/L — P/K an isomorphism is given, a subgroup U with the
given invariants is uniquely determined by U = {(g,h) € P x Q | n(hL) = n(g9K)}.
This is known as Goursat’s Theorem. We further write @|x«r = ¢1 X @5 L

With this notation, if both X and Y are transitive, say X = [GUXf ] and Y =

[Hvxf ], then by [4, Corollary 2.5], the above tensor product becomes
Gx H Hx K Gx K
oo Fgglenlvel= 3 lgew ey

IELP2(U)\£{/I?1(V)]
b2l my= V1lH,

where H, = ko(U) N “k1(V'), the subgroup U % V' is the composition
UxV ={(g9,k) € G x K|(g,h) € U, (h,k) € Vfor someh € H}
and the homomorphism ¢ x 1 : U x V' — A is defined by
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for some choice of h € H such that (g,h) € U and (h,k) € V. Note that the
homomorphism ¢ * ¢ is independent of the choice of h € H. The equation (1) is
sometimes referred as the Mackey product formula.

2.2. Decompositions for abelian groups. This product allows us to decompose
any A-fibered (G, H)-biset into basic ones, as in the case of ordinary bisets. We refer
to [4] for further details. In this paper, we only need the decomposition of fibered
bisets for abelian groups with sufficiently large fiber group A, which we discuss next.
First, we introduce the notation for basic fibered bisets which is used throughout the
paper. Let H be a subgroup of G and N be a normal subgroup of G. Also let G’ be
another finite group with a group isomorphism A : G — G.

Following Bouc [8], we define the induction from H to G and restriction from G
to H as the transitive bisets

Indf] = G’GH, Resg = HGG

where we regard the set G as a (G, H)-biset (resp. as an (H,G)-biset) in the usual
way, via left and right multiplication by the corresponding group. We also define
deflation from G to G/N and inflation from G/N to G as the transitive bisets

Defg/N = G/N(G/N)G, Infg/N = G(G/N)g/N

As above, we regard the set G/N as a (G/N, G)-biset (and as a (G, G/N)-biset) in
the usual way. Finally, we define the transport of structure from G’ to G through A
as the biset

Cg,G’ = GGG/
where the G-action is the left multiplication and the G’-action is multiplication
through A. In all these cases, the A-action is trivial.

Another basic fibered biset that we need in this paper is the twist biset defined as
follows. Let ¢ € G* = Hom(G, A) be a homomorphism from G to A. Then the twist
by ¢ at G is the A-fibered (G, G)-biset

GxG )
A(G), A(o)
Here, for any pair (G, ¢) € M(A), the diagonal inclusion (A(G), A(¢)) of (G, ¢) in
Mwc(A) is the pair consisting of the diagonal inclusion of the group G in G x G
and the diagonal homomorphism A(¢) given by A(¢)(g,9) = ¢(g).

Now let G be a finite abelian group and A be an abelian group. We say that A
is splitting for G if A contains an element of order exp(G). Note that, in this case,
homomorphisms G — A can be identified with homomorphisms G — C. For the
next theorem, we let G and H be abelian groups and A be splitting for both G' and
H. Then given a pair (U, ¢) € Maxu(A), we write (P, K,n,Q, L) for the invariants
(1 (U), k1(U),n, p2(U), ko(U)) where n is the canonical isomorphism between P/K

TW‘éz(
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and @)/L determined by U. We also write b = 1 X ¢y for an extension of ¢ to P x Q
which exists by the above assumption on A.

Theorem 2.1. Assume the above notation. Then there is an isomorphism of A-

fibered (G, H)-bisets
GxH

( U, ¢
Proof. We evaluate the product on the right hand side. Note that, in the above

product, the stabilizer for Tw% is A(P) and that for Tw‘é2 is A(Q). Also, it is clear
from its definition that for any subgroups V< G x P and V' < @ x H, we have
VxA(P) =V and A(Q)*V’ = V'. Thus, the x-product of the stabilizers on the right
hand side gives the subgroup U, as in the case of ordinary bisets given in Lemma
2.3.26 in [8]. Thus we only need to check that ¢ = (1% (¢1 % 1)) * ((1 % ¢2) x 1). Let
(9,h) € U. Then we have

((L# (G # 1)) * ((1# da) ¥ 1)) (g,h) = (1 (61 % 1))(9, 9X) - (1 % §2) + 1)(AL, h)

= G1(g) - ba(h) = (¢1 X d2)(g, h) = é(g, h)
which completes the proof of the theorem. O O

) = MdGTWR IS el e o Del, Twey Resy.

Remark 2.1. Suppose A satisfies Hypothesis 10.1 in [4], so that torA is divisible.
Then the above condition on A is satisfied trivially and hence the above theorem
holds in this case. Note that [4, Theorem 10.14] describes the decomposition of an
A-fibered (G, H)-biset for any finite groups G and H with the fiber group A satisfying
the hypothesis.

Remark 2.2. Our main interest in this paper is the case where A is a finite non-
trivial cyclic p-group for a prime p and both G and H are elementary abelian p-groups.
Clearly, the above theorem also holds in this case.

2.3. Fibered Biset Functors. Let A be an abelian group and R be a commutative
ring with unity. Let C := C3 denote the following category. The objects of C are all
finite groups. Given two finite groups G and H, we define

Hom¢(G,H) := R® B(H x G, A).

The composition is the R-linear extension of the tensor product of A-fibered bisets
introduced above.

Now an A-fibered biset functor over R is an R-linear functor C — gMod. The
class of all A-fibered biset functors together with natural transformations between
them form a category, denoted by F := F#. Since pMod is an abelian category,
the category F is also abelian. By the general theory for simple functors in such
categories, see [8, Section 2|, simple fibered biset functors can be parameterized by
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their evaluations at groups which are of minimal order having non-zero evaluation.
Explicit classification of simple fibered biset functors over a field is done in [4, Section
9]. In this paper, we only need a special case of this parametrization, where the
group G is an elementary abelian p-group for a prime number p. It turns out that
our techniques are also valid for functors parameterized by abelian groups. Next we
consider this special case for completeness.

2.4. Minimal evaluations of simple fibered biset functors for abelian groups.
In this section, we consider simple fibered biset functors with minimal non-zero eval-
uations at abelian groups. Let G be a finite group and F' be a fibered biset functor.
Also let E¢g denote the endomorphism ring of G in C. Clearly, the evaluation F(G)
is an Eg-module. Furthermore, if F' is simple, then F'(G) is a module for the quo-
tient algebra Eg = Fg /Ig. Here Ig denote the ideal generated by elements in Eg
which factor through a group of smaller order. The structure of E is described in
[4, Section 8]. It turns out that when G is abelian, its structure is simpler, as we
describe below.

For the rest of this section, let G be a finite abelian group and A be an abelian
group which is splitting for G. We first describe the structure of Fg. Note that a
similar result in the case where A is cyclic of prime order and G is arbitrary can be
found in Lemma 15 of [12].

Let G* x Out(G) denote the semidirect product of the groups G* and Out(G)
where Out(G) acts on G* via composition, that is, (A - ¢)(g) = ¢#(A(g)) for any
g€ G, 0 €G*and A\ € Out(G). With this notation, we have the following result.

Theorem 2.2. Let G be a finite abelian group and A be an abelian group which is
splitting for G. Then there is an isomorphism of R-algebras

Eq = R[G* x Out(Q))].
Proof. Let X = (%2£) be a transitive A-fibered (G, G)-biset. With the notation of

U7¢
Theorem 2.1, we can write
GXHN o gG Ty ng?, o Def?  Tw?Res!

By this isomorphism, it is clear that X is in the ideal I unless P = @@ = G and
K = L = 1. Therefore the quotient Eg can be identified with the submodule of Eg

generated by all A-fibered (G, G)-bisets X = (%) where

P=Q=G, K=L=1, U={(9,\9)) € GxG|X € Aut(G)}.

Thus by Theorem 2.1, we get
<G x G
U ¢

) & TW%1 (el CE\?,G’ X TVV%2
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where ¢ = ¢, X ¢ is an extension of ¢ to G x G and \ € Aut(G). It follows from
the Mackey product formula that if ¢ € G and c%’G denotes the inner automorphism
of GG induced by conjugation with ¢, then

.6 Vac (GUT¢G) = <GU>,<¢G> 46 .6 = <GU>,<¢G>'

Hence, up to isomorphism, the automorphism A : G — G can be taken as an outer
automorphism. Furthermore, we have

C&e ©ac Twh = Twi™ @aq G ¢
for any ¢ € G* and A € Out(G). Thus the algebra Eg is generated by all A-
fibered (G, G)-bisets of the form Tw ®4¢ ¢ty where ¢ € G* and XA € Out(G). For
simplicity, we put

[0, NG = TWZ PYe Cva.
Now we define
a: Eg — R[G* x Out(G)]

by a([¢,Ag) = (¢,A). Clearly the linear extension of « is a well-defined isomor-
phism of abelian groups. We only show that it induces an algebra map. Given
[(b, )\]G, [(ﬁ/7 )\/}G € Eg, we have

a([¢7 /\]G) ’ a([¢/7 )‘/]G) = (gbv )‘) ’ (gb,a /\/) = (gb ’ ()‘ ’ Qb,), )‘)‘/)

by definition of the semidirect product. On the other hand, by the Mackey product
formula, we have

[0, A] - [¢", N]=[¢- (A ¢), AN]a,
as required. 0 O

Now let k& be a field and S be a simple fibered biset functor over k£ with minimal
group G. Clearly the evaluation V = S(G) is a simple Eg-module. Hence, by the
previous theorem, V' is a simple k[G* x Out(G)]-module. By the general theory
explained in [5, Sections 2 and 4], given a simple Eg-module V, there is a unique
simple fibered biset functor S such that S(G) = V. We denote the simple functor
corresponding to V' by Sg . Note that, in general, a simple fibered biset functor
may have two non-isomorphic minimal groups. Thus at this point, we do not know
if the simple functor Sgy has another minimal group when G is abelian. For the
aims of this paper, this is not a problem. We remark that the exact situation can be
determined using several results from [4].
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3. FIBERED BURNSIDE FUNCTOR

In this section, we recall the ring structure on the fibered Burnside group from [1],
and introduce a natural fibered biset functor structure on it. We also determine the
actions of basic fibered bisets on primitive idempotents of the fibered Burnside ring.

3.1. The ring structure. Let G be a finite group and A be an abelian group. The
A-fibered Burnside group B#(G) can be identified with the free abelian group

BNG) = P z-[Ude

[UdlceMa(A)/G

on the set of G-conjugacy classes of pairs (U, ¢) € Mg(A). Following [10], we make
BA(G) aring via the linear extension of the following product. For A-fibered G-sets
X and Y, we define X - Y to be the union of A-orbits of X x Y with respect to the

A-action

)

for a € A and (x,y) € X x Y. We denote the A-orbit containing the pair (z,y) by
(x,4y) and make the set X -Y an A-fibered G-set via (g,a) - (z,4ay) = (g-a-z,49-y)
for (g,a) € G x A and (z,4y) € X - Y. By [1, Remark 2.3] and [3, 5.3], for [U, ¢]c
and [V, ¢]g in B4(G), we have

(2) U.dle-Vile= D WUNV,6-"Ya.

te[lU\G/V]

a-(zr,y)=(a-z,a”

The ring B4(G) is commutative and unital with unit [G,1]¢ and it extends the
(ordinary) Burnside ring B(G). Here we identify B(G) with the subring of B4(G)
generated by all the elements [H, 1]¢ as H runs over all subgroups of G. Moreover,
following [8, Remark 2.5.7], we can identify B4(G) with a subring of the A-fibered
double Burnside ring B(G x G, A) as follows. Note that the ring structure on B(G x
G, A) comes from the composition product of A-fibered (G, G)-bisets.

For an A-fibered G-set X, we define A-fibered (G, G)-biset A(X) := G x X where
the A-action is given by

a- (g,l‘) = (g,a-x)
for any a € A and (g,z) € G x X and the (G, G)-action is given by
91 (9.7) 92 = (919 92,9, - )

for any g,¢1,92 € G and x € X. Note that for a transitive A-fibered G-set [U, ¢|¢,
the above definition becomes

GxG
AU9) = |5y a)
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Here, for any pair (U, ¢) € Mg(A), the diagonal inclusion (A(U), A(¢)) of (U, ¢) in
Mwc(A) is the pair consisting of the diagonal inclusion of the subgroup U in G x G
and the diagonal homomorphism A(¢) given by A(¢)(u,u) = ¢(u). Extending this
map linearly to the A-fibered Burnside group B4(G), we get a group homomorphism
A: BYG) — BYG x G).
Note that the map A extends the map
A: B(G) — B(G,G)

defined in [8, Lemma 2.5.8]. Here B(G) (resp. B(G,G)) denotes the Burnside ring
(resp. the double Burnside ring) of the group G. Moreover we have the following
result.

Proposition 3.1. The map A is a unital ring homomorphism where BA(G x G) is
considered as a ring with the composition of fibered bisets.

Proof. Tt follows from the definition that the map A is a group homomorphism. We
only prove that it is unital and it preserves products, that is, we prove that A is
unital and for any A-fibered G-sets X and Y, there is an isomorphism

A(X YY) = AX) @4 A(Y)

of A-fibered (G, G)-bisets. Since A extends a similar map from the Burnside ring of
G to the double Burnside ring of G, it is unital. Next, we let X and Y be A-fibered
G-sets. Note that, by definition of A, the A x G x G-set A(X) xaq A(Y) is A-free
and hence we have A(X) Xa6 A(Y) = A(X) @aq A(Y) as A-fibered (G, G)-bisets.
Now we define
B:AXY) = AX)®ac A®Y)

by 5((g, (z,ay))) = (9,2)®(1,y). It is straightforward to show that /3 is independent
from the choice of the A-orbit representative (z,y) of (x,4y). Moreover § commutes
with the A x G x G-action. Indeed, if a € A and ¢y, g2 € G, then

B(a,g1) - (9, (@.a1)) - 92) = B((91992.a- (x,ay) - g2)) = B((91992, (@~ g5 " -, a 95" - 1))
= (q1992,a-95" - 2) @ (1, 95" - )

= ((91,0) - (9,%) - g2) ® (1,95 - ¥)
= ((a,01) - (9,%) ® (92,95 - )
= ((a,91) - (9,2)) @ ((1,9) - g2)
= (a,91) ((9,7) ® (1,9)) - g2

( (

Next we define the function

7 AX) ®ac A(Y) = A(X-Y)
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given by v((g,7) @ (h,y)) = (gh, (h™'-x,4)). It is easy to check that 7 is an inverse
to 8 as a morphism of A-fibered (G, G)-bisets. O O

We note that the above proof is very similar to proof of the first part of Lemma
2.5.8 in [8]. With this result, we identify B4(G) with its image in B(G x G, A)
via the map A. Under this identification, given any A-fibered biset functor F', the
evaluation F(G) of F at G becomes a B4(G)-module via restriction through A.

3.2. The functorial structure. Let k be a field. We denote by kB* the A-fibered
biset functor over k which associates a finite group G to the A-fibered Burnside group
kBA(G) = k ® BA(G) and any A-fibered (H,G)-biset X to the map

kBA(X) : kBYG) — kB*(H).

given by left multiplication. To simplify the notation, we denote the map kB4(X)
by X. Explicitly, if (U, ¢) € Mg(A), then

(3) [Hvxf] U, dle = 3 [V % 2U, 4 2] 7.

’ @€lpa(V)\G/U]

Y2lky (V)nU="lky(v)nU

The functor kB# can be identified with the Yoneda functor Home(—, 1) where 1
denotes the trivial group. In particular, it is projective and by Yoneda’s Lemma,
we have Endr(kB4) = kBA(1) = k ® Z = k as rings. In particular, the endo-
morphism ring of kB4 is local, and hence the functor kB is indecomposable. By
the classification of simple A-fibered biset functors, it is the projective cover of the
simple A-fibered biset functor S, where k denotes the one dimensional k-vector
space. The following proposition is a crucial result that we need to describe the
other composition factors of kBA.

Proposition 3.2. The evaluation kBA(G) of kB at G regarded as a module over
kBA(G) wvia restriction through A is the regular kB*(G)-module. In particular, for

any subfunctor F of kB* and for any finite group G, the evaluation F(G) is an ideal
of kBA(G).

Proof. To prove the first assertion, it suffices to prove that there is an isomorphism

of A-fibered G-sets
AX)®acY =ZX-Y

for any A-fibered G-sets X,Y € BA(G). Following the proof of Lemma 2.5.8 of [8],
we define

a:A(X)®AOY—>X-Y
by a((g,2) ® y) = (g x,4 9 -y). This is well-defined with inverse
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given by f((z,4y)) = (1,x) ® y. We leave the details to reader and note that the
proofs are almost identical to those in [8], one only needs to check the A-action. Now
the second part of the statement follows from the first part since the evaluation F(G)
becomes a submodule of the regular kB“(G)-module. O] O

Remark 3.1. The second part of the above result holds for an arbitrary Green biset
functor, that is, given a Green biset functor A, as in Section 8.5 of [8], an A-

submodule F' of A and a finite group G, then F(G) is an ideal of A(G) with the

ring structure on A(G) induced from the Green biset functor structure.

3.3. Actions on idempotents. With Proposition 3.2, we see that there is a con-
nection between subfunctors of the fibered Burnside functor kB# and the structure
of the Burnside ring kB4(G). To make this relation explicit, we need to determine
the action of basic A-fibered biset operations on primitive idempotents of the ring
kBA(G). There are two formulas for primitive idempotents of kB4(G), see [1] and
[3]. In this paper, we use Barker’s formula.

Let A be a cyclic p-group and suppose k is a sufficiently large field of charac-
teristic 0. Also let O(G) = O4(G) denote the intersection of kernels of all ho-
momorphisms G — A. In this case, the group G* is isomorphic with the dual
group Hom(G/O(G), A) of the group G/O(G). We denote by Eg(A) the set of all
pairs (H,h) where H < G and h runs over a complete set of left coset represen-
tatives of O(H) in H. The set Ez(A) is a G-set via conjugation, and we have
IMa(A)| = |Ec(A)] by [1, Lemma 3.1]. It turns out that there is a bijective corre-
spondence between the set of primitive idempotents of kB“(G) and the set £5(A).
Writing ef; , for the primitive idempotent corresponding to the pair (H,h), [1, The-
orem 5.2] gives

1
4 =D H. h
( ) CH,h |Ng(H, h)| ol |V|:U’G(V7 vy 11, )[‘/7 V]G
v c(A)/G

where Ng(H, h) denotes the stabilizer in G of the pair (H, h) under the above action
of G and where

pe(ViviHohy = 3 v (V' 0 hOHE)u(V', H)/ |V

(VrelvVivla

is the monomial M6bius function and the above sum is over all pairs (V',v') G-
conjugate to (V,v).

The idempotents egh can also be characterized using the algebra maps kB4(G) —
k, called species, introduced by Dress [10]. The set of all species is known to be a
basis for the dual space of the fibered Burnside ring, see [10] or [1, Lemma 5.1]. For
any (H,h) € Eg(A), we denote the species associated to the G-conjugacy class of
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(H, h) by

sg’h kBA(G) — k
which is given, for an A-fibered G-set X, by

sialX] =Y ¢alh).

Here the index Az runs over the fibers of X that are stabilized by H and given such
an orbit Az, the H-action on Ax induces a group homomorphism ¢, : H — A given
by ¢.(h) = a provided that h-x = a-x for some (unique) a € A. Now by the duality,
the idempotent €%, € kB*(G) is the unique element such that

G (G ):{1 (Hah) :G(K7k)

0 otherwise.

In particular, €% , is the only non-zero idempotent of kB*(G) such that X - €%, =
sg,h(X)eg’h for any X € kB4(G). Thus, for any X € kB“(G), we have the coordi-
nate decomposition

X = Z Sg,h(X)eg,h'
(Hh)eEc(A)/G

Remark 3.2. Let G be a p-group. The above idempotent formula still holds if we
replace k with a sufficiently large field of characteristic ¢ # p since all the denomina-
tors of the formula are p-powers and hence invertible in k. Thus when we restrict to
the fibered p-biset functor of fibered Burnside ring over such fields, the above formula
will remain valid.

Our next aim is to determine the actions of basic fibered bisets on primitive idem-
potents. Two of them are described by Barker in [1, Proposition 5.4 and Proposition
5.5]. We recall the result.

Proposition 3.3 (Barker). Let K < G be finite groups. Then
(i) For (H,h) € E5(A), we have
Resg’;eg,h = Z eﬁfj
(J.9)

where the pairs (J,j) run over representatives of the K-classes of the pairs
which are G-conjugate to (H, h).
(11) Let (H,h) € Ex(A). Then

Ind§efy , = [Na(H, h) : N (H, h)|e§,.
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The following Frobenius type formula is used in the next theorem to describe
actions of inflation and deflation.

Lemma 3.1. (Frobenius Relation) Let N < G be a normal subgroup of G. Then,
for any A-fibered G-set X and any A-fibered G/N-set Y, we have an isomorphism
of A-fibered G /N -sets

Y - Defgy(X) 2 Defgy (Infg/y(Y) - X) .
Proof. Recall that the deflation map Def& /v (resp. the inflation map Inf§ /) corTe-
sponds to composition with the (G/N, G)-biset G/N (resp. (G,G/N)-biset G/N).
Thus, given an A-fibered G-set X and an A-fibered G/N-set Y, we have to prove
Y (G/N ®ac X) = G/N ®ac ((G/N @aem Y) - X) .

Moreover by the proof of Proposition 3.2, we can rewrite the above equality as

A(Y) ®an) (G/N @ac X) = G/N @ac (A(G/N @acn) YY) @ac X) .
Hence by the associativity of the product ® 4¢, it is sufficient to prove that

AY) ®a@ny GIN = G/N @ac A(G/N @acnY)
as A-fibered (G/N,G)-sets. This is a straightforward generalization of part 1 of
Proposition 2.5.10 in [8]. We leave the details to reader. O O
Theorem 3.1. Let N I G be a normal subgroup of G.
(i) For any (H/N,hN) € Ec(A), we have

G/N
InfG/N eHéN n) Z €Kk
(K.k)

where (K, k) runs over representatives of the G-classes of Eq(A) such that
(KN, k) is G-conjugate to (H,h).
(i1) For any (H,h) € Eg(A), we have

G G G G/N
Defe e, = mi - CHN/NAN

for some constant m§; .

Proof. First we demonstrate that for any (K, k) € Ez(A) and for any A-fibered G/N-
set S, we have sgvk(lnfg/N(S)) = S%VJ\;N o (). Since the inflation map is a group
homomorphism, it suffices to take S transitive. For any transitive A-fibered G/N-set
[V/N,v|e/n, Equation (3) implies

Infg v ([V/N,Vlg/n) = G/N @ay) [V/N, Vg = [V, V]q
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where © denotes the inflation of v to V. Thus, we have
SKk(InfG/N([V/Nv Vigw)) = 8%, (V. 7la) = Zﬂg(k)
Ag

where Ag runs over the fibers stabilized by K. But these fibers are also stabilized
by KN/N and we have 7,(k) = v,(kN). Hence

S?{,k(lnfg/NqV/Na V]G/N)) = Sf{/N]\;N,kN([v/N7 Vlg/n)-

Therefore, we obtain

G/N G/N G/N

St k(InfG/N(eH/N ) = SKN/N, kN(eH/N ) =

1 if (KN/N,kN) =g/n (H/N,hN),
0 otherwise

0 otherwise

{ 1 if (KN, k) =¢ (H,h),

and the first part follows.
For the second part, let S be an arbitrary A-fibered G/N-set. Then, using the
Frobenius relation, we obtain

S Defg/Negh = Defg/N(Infg/N(S> : eg,h) DefG/N(SH h(InfG/NS) eH n)
G/N G/N
= DefG/N<SHN/N v (9) - eg n) = SHéV/N v (9) - DefG/N(eg,h)-

However, e%\[]\;N Ly 18 the unique element with the above property. Therefore, we

conclude that

G G/N
DefG/NeHh =M €yN/N LN

for some constant m. O O

Finally we describe the actions of transport of structure and twist bisets. We skip
the straightforward proofs.

Proposition 3.4. Let A : G — G’ be a group isomorphism, let ¢ € G* and let
(H,h) € Eq(A). Then

(1) Cg G’egh = eg\;(lH),)\(h)f

(i) TWG€Hh =o¢(h) - eg,h'

4. COMPOSITION FACTORS OVER p-GROUPS

In this section, we restrict our attention to the category of A-fibered p-biset func-
tors and determine the subfunctors of the fibered Burnside functor kB over a field
k of characteristic ¢ # p. Here by an A-fibered p-biset functor we mean a k-linear
functor C, — yMod where C, is the full subcategory of C consisting only of p-groups,
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for a fixed prime p. We also assume that A is a subgroup of the unit group of a
field of characteristic zero and that the order of A is divisible by p. Our approach is
similar to that of Bouc and Thévenaz [6, Section §].

The precise situation is as follows. We fix a prime p and a positive integer n. We
denote by u, a cyclic group of order p". For a p-group P, we let O, (P) denote the
group O, (P). Finally we let k be an algebraically closed field of characteristic ¢ # p
and fix an embedding 1, — £*. Our aim is to determine subfunctors of the functor
k ® B*~. For simplicity write kB™ := k ® B#*. For this aim, we first determine
minimal groups for the subfunctors of the fibered Burnside functor.

Interestingly, in all cases, the minimal groups are elementary abelian. As in the
case of the ordinary Burnside functor, extra work should be done to see which ele-
mentary abelian groups appear as a minimal group and it turns out that the possible
ranks depends only on whether ¢|p — 1.

To begin with, let F' be a subfunctor of kB"™ and suppose that G is a minimal group
of F. We know, by Proposition 3.2, that F'(G) is an ideal of kB™(G). Therefore, it
is generated by a set of primitive idempotents €% , of kB"(G). Let X be a fibered
(L, G)-biset for some group L. If X can be factored through a group K with |K| <
|G|, then for any e}, € F(G) we should have X - e, = 0. This implies that
to find the minimal groups, we need a deeper understanding of the action on the
idempotents of the fibered bisets that map to groups of smaller order.

First, notice that for any proper subgroup H < G, the idempotent efm is not

contained in F(G). Indeed Resgeg’h = epp, and F(H) = 0. Therefore, the ideal

F(G) must be generated by idempotents of the form eg’ v

Next we consider the action of deflation maps on the idempotents of the form e .

Recall that if N <G is a normal subgroup of G, then
G/N
(5) Def6neG, = m - egpmon

for some constant m. Since G is minimal, for any non-trivial normal subgroup N of
G the constant m should be zero. Following Bouc and Thevénaz [6], we consider the
elementary abelian p-groups and non-elementary abelian p-groups, separately. Let
®(G) denote the Frattini subgroup of G and G denote the quotient G/®(G).

Lemma 4.1. For any p-group G and g € G, we have

cao _ 0G| = @
DeféeG,g = No(G.g)| G| - €5 g0(C)"
Proof. Recall the idempotent formula
1
e}
€l = T V Vv, G, g)|V,v]g.
G,g9 ‘Ng(G, g)| Z ‘ |:uG( g)[ ]G

(Vwv)egMa(A)
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By the definition of the deflation maps, we have
1
DefSel = ——— Vipe(V,v; G, 9)[VO(G)/®(G), Ve
o= gy 2 WV G0l 0(G)H(E) g
V)EcMa(A)
vne(G)<kery

Then Equation (5) becomes

1 —
oGl 2 VIkelVnG.glveG)/e(G). g
P (Vv)eagMa(A)

VNe(G)<kerv

- IN=(G, g®(G))| (%)|W|NG(W w; G, g® (@)W, wlg.

Here (W, w) runs over a set of representatives of the G-conjugacy classes of the set

Me(A). Now the coefficient of [G, 1]z in the right-hand side is

NG g(C))] Glua(G, 156G, g®(G)).

We also have

1e(G.1G.g0(@) = Y \Vﬂg<I>(G>O(5)\M(V,@)/IV\:i

- G|
(Vp)e[Gllg
Here the last equality holds since the only pair which is a—_conjugat_e to_[a, 1)z is
(G,1) and hence the sum collapses to the term |GNg®(G)O(G)|u(G, G)/|G| and the

intersection GNg®(G)O(G) consist only of the element g®(G). Thus, the coefficient

1S
m m

Na(@ 9G] 1GT

On the other hand, the coefficient of |G, 1|z on the left-hand side is

1
e > Vua(V,1;G,g).

Since ®(G) is the Frattini subgroup of G, the equality V®(G) = G implies that
V =G. Then
no(G, ;G g) = Y [WNgOo@)u(W,G)/[W| = |0(G)|/|G].

(W,I)G[G,I]G

Therefore we get
0(G)]

= Nol@.gy /)
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as required. O O]

Now let F' be a subfunctor of kB™ and G be a minimal group for F. If G is not

elementary abelian, then the Frattini subgroup ®(G) of G is nontrivial. Also, the
|0(G)|
L= e @l
|O(G)|, |G| and |Ng(G, g)| are orders of subgroups of the p-group G and hence m is
a power of p and the characteristic ¢ of the field k is not equal to p. But since the
deflation of 687 , to a non-trivial normal subgroup is non-zero, we conclude that G is

not a minimal group. This proves the following result.

coefficient m = -|G| in the previous lemma is non-zero. Indeed, all the terms

Proposition 4.1. Let F' be a subfunctor of kB"™ and G be a minimal group for F.
Then G is elementary abelian.

Our next goal is to find which elementary abelian p-groups can be a minimal
group of a subfunctor of kB™. We first evaluate the deflation map on the primitive
idempotents egjg when G is an elementary abelian p-group.

Proposition 4.2. Let G be an elementary abelian p-group of rank r, let h be a
non-trivial element of G and H =< h > be the subgroup generated by h. Then, we
have

G/H

(6) Defg/Hegg =My p - eG;H’gH
where .

E— ifg =1,

mgvH: % ng#lhqu;

P ifg ¢ H.

Proof. Recall the idempotent formula
1
Go= o 2= Ve(VriGolV v,
G I wneamala)

Since G is elementary abelian, and hence abelian, the G-actions seen in the formula
are all trivial and hence the formula becomes

1
eg,gzm S WVIuV,v G g)lVi Ve
(Viv)eMg(A)

Furthermore, since G is a non-trivial elementary abelian p-group, the subgroup O(G)
is the same as the intersection of kernels of the irreducible complex characters, and
hence it is trivial. Therefore,

w(Viv; G, g) = v(g)u(V,G)/|V]
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and we have

eg,g = 1 Z I/(g),u(v, G)[V7 V]G-

| | (Viv)eMg(A)

Now we need to apply the deflation map to both sides. As in the proof of Lemma
4.1, we have

1 -—
DetGmely =1 > Om(V.G)VH/H Pl
(Viv)eMa(A)
vnH<kery

To evaluate the right hand side of the above equality, we consider three separate
cases, namely, g =1 or 1 # g € H or g ¢ H. For the first case, suppose g = 1. Then
the above equality becomes

1 _
Defg g, = il Z w(V,G)VH/H,V]g/u-
(Viwv)eMca(A)
vna<kery

On the other hand, by Equation 5, the left hand side of the above equation is also
equal to a multiple of

1
Chin =T > MVGHV.vam

(Vi) eMea u(A)
Thus, we have the equality
1 m
— V.G)\VH/H,v = — W, G/H)[W, :
|G| Z :u( ) )[ / 7I/]G/H |GH| Z IU( ? / )[ 7w]G/H
(Viv)eMca(A) (Ww)eMg/m(A)
vna<kery

To determine the constant m, we compare the coefficients. Note that the coefficient
of [G/H,1]g/m in the right hand side is 7. In the left hand side, it is

|—é| e

where V' runs over the subgroups satisfying V H = (G. But, the last equality implies
either that V' = G or that V' is a complement of H in GG. If V is a complement of H,
then |V| = p"~!. But, in this case, V' is maximal subgroup of G. Thus, u(V,G) = —1.
Note that there are p"~! many complements of H. If V = G, then obviously we have

r—1

w(V,G) = 1. Therefore, the coefficient in the left hand side becomes 1‘; . We
l_pr—l
P

conclude that m = , as required.
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For the second case, we let 1 # g € H. As above, we have

1 _ _
m Z v 1(9)“(‘/7 G)[VH/H? U]G/H -
(Viv)eMg(A)
vnH<kery
m

T 2 @GR GV, wlo
(Ww)

The coefficient of [G//H, 1] in the right hand side is again 7. In the left hand
side, it is equal to the sum

G

5 V.6

where V' runs over subgroups containing g and satisfying VH = G. Note that since
g€ HNV and g # 1, the subgroup V cannot be a complement of H and hence we

must have V' = . Therefore the coefficient becomes # and we hence we get that

m = zl)’ as required.
The last case where g ¢ H is similar to the above cases. We do not include the
proof. 0] O

With this result, we can determine the subfunctors and minimal groups more
explicitly. Let Z = {0} U{r € N|p"~! =1 (mod ¢)} be the set of powers r of p
for which all proper deflations by cyclic subgroups of the idempotent 651, with
elementary abelian of rank r, is zero. We enumerate the elements of Z = {r;}°,
such that ¢ < j implies ; < r;. Then we have the following theorem.

Theorem 4.1. Let F' be a subfunctor of kB™ and G be a minimal group of F'. Then,
(i) the group G is elementary abelian of order p", for some r € T,
(ii) the k-vector space F(G) is 1-dimensional generated by e | and
(ili) the subfunctor F is generated by e .

Proof. By Proposition 4.1, we know that GG is elementary abelian. We also know that

F(G) is generated by idempotents of the form eguq. Suppose that the idempotent

eg , is contained in F(G) for some g # 1. Then by Proposition 4.2, we have

1
G €]
0 # DefG/<g>eg7g = eriz;<g> € F(G] <g>).

But G is minimal and hence F(G/ < g >) = 0, contradiction. Therefore, the
idempotent 681 must generate F'(G). Moreover, if G has rank r, then, by Proposition
4.2,

1 _prfl
G G G/<g>
DefG/<g>€G71 — —p . 6G/<Z>7<g> E F(G/ < g >)
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Thus, we must have p"~! = 1 mod ¢. Thus we have proved the first two parts of the
theorem.

To prove the last part, let G = E, be an elementary abelian group of rank r and
suppose, for a contradiction, that the idempotent egh does not generate F' and let
K denote the subfunctor of I’ generated by 65:71. Then, there exists a group T such
that for some element z € F(T'), we have x ¢ K(T'). Suppose T" has minimal order
with respect to the property that F'(7') # K(T). Since F(T) is an ideal of kB"(T), it
is generated by a set I of primitive idempotents. Thus, in the primitive idempotent

basis, we have
_ T T
T = E Thn €HAR
I

for some constants xﬁvh € k. This implies that for some pair (H, h), the idempotent
€jr, is not contained in K'(T').

To determine the set I, suppose that ej;, ¢ K(T) and H # T. Then, by the
minimality of T, we have Respef;, € K(H). So, for some X € kB"(H x E,), we
have

ResHeHh =X eg:’l.
Thus, multiplying both sides by an induction biset, we get
Ind?, ResHeHh = (Inng)egjn'J.
But note that
eﬁh - Ind}, ResHeHh a- eﬂh

for some non-zero o € k. Thus, we have

6Hh ((Ind X)eE 1) = ejl;,h

which implies that ef; , = Lo (ef, Hh -Ind}, X) - ek z.1- This is a contradiction since we
assumed that ef; , is not in K(7T'). So we must have H = T.

Next suppose that ef, ¢ K(T') and the Frattini subgroup ®(7') is non-trivial.
Then, again, by the minimality of 7', we have Def:‘;/@(T)e%t =X 65:71 for some

X € kB"(T/®(T) x T). Note that
eTt (InfT/é(T)DefT/cb(T)e;t) G eg,t
for some non-zero # € k. Thus, we have
eg,t : (Inf;;/qu)X : 651,1) =0- Q;t

which implies e%t = % - (eF, - InfT. o)X ) 65:71 which is again a contradiction. So,

we must have ®(7') = 1 and T is elementary abelian.
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Finally, suppose e}, ¢ K(T) and T is elementary abelian. By part (i), the rank
of T is greater than or equal to that of G and hence there is a subgroup U of T'
isomorphic to G. Without loss of generality, suppose U = GG. Now if ¢ # 1, then we

have )
T T T/<t>
Detr) i1, = 2_9 Tl <t <t>
and by similar arguments, we again obtain a contradiction. Therefore, we must have
t = 1. Also, if P < R are elementary abelian, then the idempotent e%yl is a summand
of Infffe},. In particular, the idempotent e}, is a summand of Infj, ez’ ; and hence

in K(7T), a contradiction. This completes the proof of the theorem. U 0
The following corollary follows immediately.
Corollary 4.1. The A-fibered Burnside functor kB™ over p-groups is uniserial.

Proof. Let K and L be subfunctors of kB“ with the respective minimal groups F
and D. Suppose, without loss of generality, that the rank s of E is less than the rank
r of D. Then by the previous theorem, K (resp. L) is generated by egl (resp. 631).
We claim that L C K. To prove this, it is sufficient to show that L(D) C K(D). But
as remarked in the proof of the previous theorem, the idempotent 6571 is a summand

of Infgegl and since K(D) is an ideal of kB4(D), we have e} ; € K(D). Therefore,
by the previous theorem, L(D) C K (D). O O

Finally we identify the subfunctors and the composition factors of the fibered
Burnside functor over p-groups. Our description is in terms of the well-known sub-
functor of intersection kernels, defined as follows. Let F' be a fibered biset functor
and H be a set of minimal groups of F. Then, the k-module K7,(G) given by

Kj(G) = () ker(X : F(G) — F(H))

HXG
HeH

together with the induced actions of fibered bisets is a subfunctor of F' (cf. [4, Section
11]).

Proposition 4.3. Let K denote kBA. Fori > 0, define K;y, recursively as follows.
Let H; be the minimal group of K;, and put K; 11 = K{I%Q}' Then,

(i) the subfunctor K;.i is the unique maximal subfunctor of K,
(ii) the minimal group H; of the subfunctor K; is the i-th element E,. of the set
T defined above.

Proof. Note that K;,; is a subfunctor by definition. To see that it is maximal in
K;, let ' C K; be a proper subfunctor. We need to show that for any group G, we
have F'(G) C K;1(G). To prove this inclusion, it suffices to show that F(H;) = 0.
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Indeed, let = € F(G) be an arbitrary element. Then, for any A-fibered (H;, G)-biset
1, Xa, we have g, X -x € F(H;) = 0. It follows that © € Kg,(G) by the definition
of Ki+1-

Now, note that we have F(H;) C K;(H;) = k - eg;l. In particular, K;(H;) is
of dimension 1, and since F' is proper and K; is generated by eg;l, we must have
F(H;) = 0. Indeed, otherwise F'(H;) = K;(H;) and hence F' = K;. This shows that
K1 is the unique maximal subfunctor of K;, completing the proof of the first part.

For the second part, since the minimal group of Ky is the trivial group 1 which
corresponds to the 0-th element of the set Z, by part (i), it is sufficient to show that
if L C F are subfunctors of kB4 with L maximal in F, and if the minimal group of
F'is E,,, then the minimal group of L is E,. .

To prove this claim, let the minimal group of L be FE, .. Since L is a proper
subfunctor, by Theorem 4.1, we should have ¢ < j. Let K denote the subfunctor of
F' generated by the idempotent eg:i ;- Then, K is a proper subfunctor of F. Indeed,
every A-fibered (E,,, E,

1

of e E:’* , under the restriction and the deflation maps are zero. Thus, we have
1+1°

K(E,,) = 0. Now, L being maximal guaranties that we have K(E, ) C L(E,,,,).
Since K (E,., ) is non-zero, we conclude that j < i+1 which implies j =:+1. O O

Ti4+1

.+1)-biset decomposes as in Theorem 2.1. However, the image

Thus we have shown that for each r; € Z, there is a subfunctor, namely Kj;, of
kBA. Next we examine the set Z = {0} U{r € N|p"! =1 (mod ¢)} more closely.

If ¢ = 0, then clearly we have Z = {0,1}. If ¢ # 0, then Z consists of all positive
integers congruent to 1 modulo s where s is the order of p modulo ¢q. Note further
that if ¢ divides p — 1, then the order s is equal to 1 and Z consists of all positive
integers. Now we are ready to state our main theorem.

Theorem 4.2. Let A be a cyclic p-group and k be a sufficiently large field of char-
acteristic ¢ with ¢ # p. Then, the A-fibered Burnside functor kB4 over p-groups is
uniserial. Moreover we have

kB4 = Ky > K, D K., = {0} if ¢ =0,
kBA =Ky DK DKy D K3 ifq#0andq|p—1,
kBY =Ky D Ky D Kis D Kijgs D - ifq#0 and qgfp— 1.

where the subfunctors K; are as defined above and for each i, the simple quotient
K; /K1 is isomorphic to the simple A-fibered p-biset functor SE, 1-

Proof. All the parts of the theorem is proved except the last claim concerning the
simple composition factors. Note that the quotient S; = K;/K;,; is simple and the
minimal group of the quotient is £,,. Thus it is sufficient to show that for each 1,
the k-vector space S;(E,,) is the trivial k[E} x Out(E,,)]-module.

i
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However, we have S;(E,,) = k - egf ,- Hence it suffices to show, for ¢ € EJ and
A € Out(E,,), that the effects of the fibered bisets TW%MET. and ¢, 5 on the

i

idempotent eg:?’l are trivial. But by Proposition 3.4, we have

¢ B, B, BEr
TWE, &, " €pqa = 9(1) €g 1 =ep
and
A E., _ En _ B
CEry Ery " CBry 1 = ONE) A T CEry1
as required. Il O

Remark 4.1. As remarked above, a simple fibered biset functor may have two non-
1somorphic minimal groups. However, this is not the case for the simple functors that
appear in the previous theorem. Indeed, we already know that any minimal group for
a subfunctor of the fibered Burnside functor must be an elementary abelian p-group
and, of a given order, there is a unique elementary abelian p-group.

Remark 4.2. Let k be a field of characteristic zero and A be a non-trivial cyclic
p-group. Then, by the above theorem, there is a short exact sequence

0—>Sc, 1 — kB — S8, ——=0

of A-fibered p-biset functors. One can show that the simple head can be identified
with the functor kR4 of A-monomial characters and the quotient map can be chosen
as the linearization map. Hence the above sequence becomes

0 —> Sc,1 —> kB* — kRy —> 0

Recall from [6] that, in the case of p-biset functors, that is, when A is trivial, the
corresponding sequence is

0 kD —> kB —> kRg 0

where kD s the functor of torsion-free part of the Dade group, B is the (ordinary)
Burnside functor and kRg is the functor of rational representations. Existence of this
sequence is one of the key results in the classification of endo-permutation modules.
We do not know any natural construction that would match the simple A-fibered
p-biset functor seen in the above short exact sequence.
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