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Abstract

Let A be an abelian group and let K be a field of characteristic zero containing roots of
unity of all orders equal to finite element orders in A. In this paper we prove fundamental
properties of the A-fibered Burnside ring functor B# as an A-fibered biset functor over K.
This includes a description of the composition factors of B and the lattice of subfunctors
of B in terms of what we call B*-pairs and a poset structure on their isomorphism classes.
Unfortunately, we are not able to classify B“-pairs. The results of the paper extend results of
Cosgkun and Yilmaz for the A-fibered Burnside ring functor restricted to p-groups and results
of Bouc in the case that A is trivial, i.e., the case of the Burnside ring functor as a biset functor
over fields of characteristic zero. In the latter case, B4-pairs become Bouc’s B-groups which
are also not known in general.

1 Introduction

Let A be a finite group and let k be a commutative ring. An A-fibered biset functor F over k
is, informally speaking, a functor that assigns to each finite group G a k-module F(G) together
with maps res: F(G) — F(H) and ind$: F(H) — F(G), whenever H < G, called restriction
and induction, maps infg/N: F(G/N) — F(G) and defg/N: F(G) — F(G/N), whenever N is a
normal subgroup of G, called inflation and deflation, and maps isoy: F(G) — F(H), whenever
f: G — H is an isomorphism. Moreover, the abelian group G* := Hom(G, A) acts k-linearly on
F(G) for every finite group G. These operations satisfy natural relations. Standard examples are
various representation rings of K G-modules, for a field K and A = K*. In this case, G* is the
group of one-dimensional KG-modules acting by multiplication on these representation rings. In
[BC18] the simple A-fibered biset functors were parametrized. If A is the trivial group then one
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obtains the well-established theory of biset functors, see [Bcl0] as special case. A-fibered biset
functors over k can also be interpreted as the modules over the Green biset functor B,‘f, where
B{}(@) is the A-fibered Burnside ring of G over k (also called the K-monomial Burnside ring of
G over k, when A = K* for a field K). Another natural example of A-fibered biset functors
(without deflation) is the unit group functor G — B“(G)*. This structure was established in a
recent paper by Bouc and Mutlu, see [BM19] and generalizes the biset functor structure on the
unit group B(G)* of the Burnside ring.

Representation rings carry more structure when viewed as A-fibered biset functors compared
to the biset functor structure. One of the goals is to understand their composition factors as
such functors. By various induction theorems (e.g. by Brauer, Artin, Conlon) some of these
representation rings can be viewed as quotient functors of the functor B,’:‘ for appropriate A and k.
Thus, it is natural to first investigate the lattice of subfunctors of Bf* and its composition factors.
This is the objective of this paper, where k is a field of characteristic zero containing sufficiently
many roots of unity. Cosgkun and Yilmaz achieved this already in [CY19] for the same functor
category restricted to finite p-groups for fixed p, and for A being a cyclic p-group. The choice of
A being cyclic allows them to use results on primitive idempotents and species of B,‘:‘(G) from
[Ba04], which were based on embedding A into k*, for k a field that is large enough. Our choice
of A is more general (using only that G* is finite for all finite groups G), thereby requiring a more
complicated parametrizing set for the species and primitive idempotents of B;;‘(G). This way the
roles of A and k are kept as separate as possible while still implying that B,‘;‘(G) is split semisimple.

The paper is arranged as follows. In Section 2 we recall basic facts about the A-fibered Burnside
ring B{!(G), about fibered biset functors, and the definition of B! as fibered biset functor. In
Section 3 we parametrize the set of primitive idempotents of B (G) over a field K of characteristic
0 which contains enough roots of unity in relation to the finite element orders of A. We also derive
an explicit formula for these idempotents, using results from [BRV19] on the — construction. We
take advantage of the fact that the Green biset functor B arises as the —, construction of the
Green biset functor G — KG*. Interestingly, the idempotent formula we derive in Theorem 3.2 is
different from the one given by Barker in [Ba04] when specializing to the more restrictive cases of
A considered there. It is used as a crucial tool in the following sections. In Section 4 we provide
formulas for the action of inductions, restrictions, inflations, deflations, isomorphisms and twists
by ¢ € G* on these idempotents. Crucial among those is the action of defg /N> which maps a
primitive idempotent of BZ(G) to a scalar multiple of a primitive idempotent of BZ (G/N). After
establishing three technical lemmas in Section 5, this mysterious scalar is studied in more depth in
Section 6. The vanishing of this scalar is a condition that leads to the notion of a B4-pair (G, ®),
where G is a finite group and ® € Hom(G*,K*), in Section 7. There, we also study particular
subfunctors F(g,¢) of Bﬂ‘é. In Section 8, we show that every subfunctor of Bﬂé is a sum of some
of the functors F(g ¢) and that the subfunctors of Bﬁé are in bijection with the set of subsets of
isomorphism classes of BA-pairs that are closed from above with respect to a natural partial order
<, see Theorem 8.8. In Section 9 we show that the composition factors of Bﬂ‘g are parametrized
by isomorphism classes of B4-pairs. For a given B“-pair, we also determine the parameter (a
quadruple) of the corresponding composition factor in terms of the parametrization of all simple
A-fibered biset functors over K given in [BC18]. Finally, in Section 10, we consider the special case
that A is a subgroup of K*. In this case, a natural isomorphism G/O(G) = Hom(G*,K*) for a
normal subgroup O(G) of G depending on A, allows to reinterpret the set of B4-pairs and makes
our results compatible with the language and setup in [Ba04] and [CY19].

The approach in this paper follows closely the blueprint in [B¢10, Section 5] for the case A = {1}.



However, the presence of the fiber group A requires additional ideas and techniques to achieve the
analogous results. The main technical problem is that a transitive A-fibered biset with stabilizer
pair (U, ¢), does in general not factor through the group ¢(U) = p;(U)/k;(U), i = 1,2, since ¢ is
in general non-trivial when restricted to k1 (U) x ko(U).

1.1 Notation For a finite group G we denote by exp(G) the exponent of G. If X is a left G-set,
we write x =¢ y if two elements x and y of X belong to the same G-orbit. For z € X, we denote
by G, or stabg(z) the stabilizer of z in G. By X we denote the set of G-fixed points in X and
by [G\X] a set of representatives of the G-orbits of X. For subgroups H and K of G, we denote
by [H\G/K] a set of representatives of the (H, K)-double cosets of G.

For an abelian group A, we denote by tor(A) its subgroup of elements of finite order, and, for
a ring R, we denote by R* its group of units.

2 Prerequisites on the A-fibered biset functor B;!

Throughout this paper, we fix a multiplicatively written abelian group A. For any finite group
G we set G* := Hom(G, A), which we view as abelian group with point-wise multiplication. We
will freely use the language of bisets and biset functors as developed in [Bc10, Chapters 2 and 3].
Throughout, G, H, and K denote finite groups, and k denotes a commutative ring.

2.1 (a) The A-fibered Burnside ring B4(G) of G is defined as the Grothendieck group of the
category of A-fibered left G-sets, see [BC18, 1.1 and 1.7]. It has a standard Z-basis consisting of
the G-orbits [U, ¢]¢ of pairs (U, ¢), where U < G and ¢ € U*. The set M(G) = MA(G) of such
pairs has a natural G-poset structure, see [BC18, 1.2]. The multiplication in B4(G) is given by

[Ua ¢]G . [V’ w}G = Z [Uﬂ gva¢|Um9V ’ (gw)lUmgv]G7 (1)

ge[H\G/V]

and [G, 1] is the identity. We set B{(G) := k ®z BA(G). If A is the trivial group, we recover the
Burnside ring B(G) of G.

(b) We further set BA(G,H) := BA(G x H). This group can also be considered as the
Grothendieck group of A-fibered (G, H)-bisets, see [BC18, 1.1 and 1.7]. The standard basis el-

ements of B4(G, H) will be denoted by [fo}, for (U, ¢) € M(G x H). The tensor product of

U,
A-fibered bisets induces a bilinear map

— .= BAG,H) x BAH,K) = B*(G,K), (2)

which behaves associatively. Its evaluation on standard basis elements is given by the formula (see
[BC18, Corollary 2.5])

[GxH]&[HxK}_ { G x K 3

- (t,1) (t,1) ’
v,¢ Vi b epaatmony LU OV, dx 000
¢2|Ht:t1/11|Ht

where Hy := ky(U)N k1 (V). See [BC18, 1.2] for the definition of p;(U) and k;(U), for i = 1,2, and
[BC18, 2.3] for the definition of U x ®VV and ¢ x 1y Recall from the latter that ¢; € k;(U)*,



i = 1,2, are defined as the unique elements satisfying ¢|x, ()xr, () = 1 ¥ ¢2_1, with ¢2_1 denoting
the inverse of ¢ in the group ko(U)*.

(c) Recall from [CY19, 3.1] that there exists a ring homomorphism A: BA(G) — BA(G,G),
U, ¢lc — [%}7 where A(U) := {(u,u) | u € U} and A(¢)(u,u) := ¢(u). Here, BA(G,G)

is considered as ring via the multiplication ¢ from (2).

2.2 (a) The bilinear maps in (2) are used as the definition of composition in the k-linear category
C,‘;‘7 whose objects are the finite groups and whose morphism set from H to G is B,‘;‘(G, H).
An A-fibered biset functor over k is a k-linear functor F': C;;‘ — rMod. Together with natural
transformations, these functors form an abelian category ]-',CA. If A is the trivial group, one recovers
the biset category Ci and the category of biset functors F over k, see [Bcl0, Sections 3.1 and 3.2].

(b) The association G +— Bj*(G), together with the bilinear maps in (2) applied to K = 1 (and
using the canonical identifications of H = H x {1} and G = G x {1}) defines the A-fibered biset
functor Bf* € F{, which is the main object of study in this paper.

(¢) If f: A/ — A is a homomorphism between abelian groups, one obtains induced maps
Hom(G, A’) — Hom(G, A), M* (G) - M*(G), ring homomorphisms B4 (G) — BA(G), and
k-linear functors i — Ci! and Fi* — ]-',;4 . In particular, when A’ is the trivial group, we obtain
embeddings B(G,H) C BA(G,H), [(G x H)/U] — [GUXIH], and C, C C{!. This way, we can
view the elementary bisets 1res}C;:,7 indg, infg/N, defg/N, isoy, for H < G, N 1 G, f: G 5 aq,
as elements in B4(G, H), BA(H,G), BA(G,G/N), BA(G/N/G), BA(G',Q), respectively. One
can verify quickly with (3) for K = {1}, that their operations under the A-fibered biset functor
structure of B{! in (b) on standard basis elements are given by

resg([lﬁ ¢]G> = Z [Hm gUa (gqs)‘ngU]H? lndg([‘/v w]H) = [Va 1/1](;7

ge[H\G/U]

lnfg/N([U/Na QS}G/N) = [U7 d) © V]G )
where v: U — U/N is the natural epimorphism,

[UN/N,dla/n, if UNN < ker(s),
0 otherwise,

defé (U, ¢l) = {

where ¢(ulN) := ¢(u) for u € U, and

isor([U,¢la) = [f(U),¢0 f poler -
In particular, for g € G and H < G, and (U, ¢) € M(H), we have

U, ¢lu = isoc, (U, ¢lu) = [U, %] oy ,

where c,: H = gHg™ ! is the conjugation map. For A € G* and (U, ¢) € M(G), one additionally
has

th\([Ua ¢]G) = [Uv )“U ’ ¢]G’

the twist by A, coming from the application of twy := A([G,N¢g) = [%} € BAG,G).

It is easily verified that resg, infg /v and isoy are ring homomorphisms, and that B,?(G) is a
kG*-algebra via tw.



Using the above notation, one obtains a canonical decomposition of a standard basis element
of BA(G, H) into elementary bisets and a standard basis element for smaller groups.

2.3 Theorem ([BC18, Proposition 2.8]) Let (U, ¢) € M(G x H) and set P := p1(U), Q := p2(U),
K :=Xker(¢1), and L :=ker(¢2). Then K <P, L 1Q, K x L AU, and

GxH| . o ..p P/K xQ/L Q H
[w:| = lndPPlan/K P/K |:Uv/(l(><l/)7¢ Q/LdefQ/LéresL y

where ¢ € (U/(K x L))* is induced by ¢ and U/(K x L) is viewed as subgroup of P/K x Q/L via
the canonical isomorphism (P x Q)/(K x L) = P/K x Q/L.

2.4 Remark Let Dy be the subcategory of Cp with the same objects as Cj, but with morphism
sets generated by all elementary bisets, excluding inductions. In other words, Homp, (H,G) C
By(G, H) is the free k-module generated by all standard basis elements [(G x H)/U] with p;(U) =
G. Mapping G to the group algebra kG* defines a Green biset functor F' on Dy over k in the sense
of Romero’s reformulation [R11, Definicién 3.2.7, Lema 4.2.3] of Bouc’s original definition [Bc10,
Definition 8.5.1], with restriction, inflation and isomorphisms defined as usual, viewing Hom(—, A)
as contravariant functor, and deflation defined by

G L o, if ¢|N =1,
defG/N((b) o {0, otherwise,
whenever N is a normal subgroup of G and ¢ € G*. Here, ¢ € (G/N)* is induced by ¢. In fact,
it is straightforward to check that all the relations in [Bc10, 1.1.3] that do not involve inductions
are satisfied. Thus, we are in the situation of [BRV19, Theorem 7.3(a),(b)] and obtain via the —,-
construction a Green biset functor Fy on (D)4 = Ci. The Green biset functor F is isomorphic to
the Green biset functor Bj' on C;. This follows from [BRV19, Theorem 4.7(c)] and by comparing
the explicit formulas for the elementary biset operations in 2.2(c) with the explicit formulas in
[BRV19, Remark 4.8]. We will use this point of view repeatedly in Sections 3 and 4.

3 Primitive idempotents of By (G)

Throughout this section we assume that G is a finite group such that H* = Hom(H, A) is a finite
abelian group for every H < G. This is equivalent to torey,(c)(A) being finite. Moreover, we
assume that K is a splitting field of characteristic zero for all H*, H < G. Note that this holds if
and only if K has a root of unity of order exp(torexp(c)(A4)). Also note that in this case S* is finite

and K is a splitting field for S*, for each subquotient S of G.

We define X(G) as the set of all pairs (H,®) with H < G and ® € Hom(H*,K*) and note
that G acts on X(G) by conjugation: Y(H,®) := (9H, %), with 9%(¢) := ¢>(g_1¢), for g € G,
(H,®) € X(G), and ¢ € H*. The assumptions on K imply that, for any H < G,

KH* — 11 K, a— (s¥(a))e, (4)
dcHom(H* ,KX)

is an isomorphism of K-algebras. Here, we K-linearly extended ® to a K-algebra homomorphism

s KH* - K.



The first orthogonality relation implies that, for ¥ € Hom(H*,K*), the element

= Y (¢ g e KH* (5)
] 2

is the primitive idempotent of KH* which is mapped under the isomorphism in (4) to the primitive
idempotent eg c H«p K whose ®-component is dg w.
For any H < G we consider the map

6 ifU=H,

Tt Bi(H) = KH*, (U ¢y — .
0 otherwise.

It is easily seen by the multiplication formula in (1) that 7y is a K-algebra homomorphism and
we obtain for every (H, ®) € X(G), a K-algebra homomorphism

s(GH@) = sl omy oresy: BE(G) — BE(H) - KH* — K.

3.1 Theorem The map

G

BHQ(G) - H K y T (S(GH,Q) (‘T))(H’q)) ’ (6)
(H,®)eX(G)

is a K-algebra isomorphism. Here, G acts on H( H,0)ex(G) K by permuting the coordinates accord-

ing to the G-action on X(G). In particular, every K-algebra homomorphism B (G) — K is of the
form s(GH,@) for some (H,®) € X(G). For (H,®),(K,¥) € X(G) one has S(GH@) = s(GK,\I,) if and
only if (H,®) =¢ (K, ¥).

Proof By Theorem [BRV19, Theorems 6.1 and 7.3(c)] and using Remark 2.4, the mark morphism

G

mag: BHIQ(G) — H KH* , T (WH(resg(x)))H<G7 (7)
H<LG

is a homomorphism of K-algebras and by Theorem [BRV19, Corollary 6.4] it is an isomorphism,
since |G| is invertible in K. Here, G acts on [[ < KH* by Y(am)n<c) = (%g-11q)n<a. Using
the K-algebra isomorphisms from (4), we obtain a G-equivariant K-algebra isomorphism

[Mxe-— [ K.

HLG (H,2)eX(G)

Applying the functor of G-fixed points to this isomorphism and composing it with the isomorphism
in (7), we obtain the isomorphism in (6). The remaining assertions follow immediately. U

Clearly, for each (H,®) € X(G), we obtain a primitive idempotent e(GH g of the right hand
side of the isomorphism (6). More precisely, e(GH ®) has entries equal to 1 at indices labelled by the

G-conjugates of (H, ®) and entries equal to 0 everywhere else. We denote the idempotent of B (G)
corresponding to e(GH ) by e(GH ®) € BZ£(G). If (H,®) runs through a set of representatives of the



G-orbits of X(G) then e(C"H@) runs through the set of primitive idempotents of B (G), without
repetition. Thus, we have

1, if (H,®) =¢ (K,0),

0, otherwise, and G(GH’q)) - S(GH’q)) ($)6?H’¢) ’ ®)

S(GH,<I>)(€(GK,\I/)) = {

for any (H,®), (K,¥) € X(G) and any = € B#(G).

The following theorem gives an explicit formula for e( H.3)- A different formula for particular
choices of A was given by Barker in [Ba04, Theorem 5.2]. For any H < Ganda=3 ", . apd €
KH* we will use the notation [H, a]g := > _,c - ag[H, lc € B (G). Moreover, Ng(H, ®) denotes
the stabilizer of (H, ®) under G-conjugation.

3.2 Theorem For (H,®) € X(G) one has

c(ir.e) = W(}{@)KZ:H|K|H (K, H)[K,rest (e 9)
1
e 2, M DI e (el (10)
B[ =1
1 -1
= |Ne(H, ®)[ - [H7| KZ:H d)ez];* |K|u(K, H)®(¢~")[K, ¢|x]c € B (G), (11)
O 1 =1

where K+ 1= {¢ € H* | ¢|c = 1} < H* and p is the Mdbius function on the poset of all subgroups
of G.

Proof We use the inversion formula of the K-algebra isomorphism (7) from [BRV19, Proposi-
tion 6.3] and obtain
1
(i) = 1€l > LI, KL, vest (ax)]a (12)
LLK<LG

with ag € KK*, K < G, given by ag = er[Ng(H)/Ng(H,d))] xeg, a9y = %y, for any g € G, and
ax = 0 for all K not G-conjugate to H. Thus, in the above sum, for K it suffices to consider only
over subgroups that are G-conjugate to H. We obtain

]' T
6(GH,‘1>) = €] Z Z |L|p(L, *H)[L 1”3SL "("an))e - (13)
z€[G/Na(H)] L °H

Replacing L with *K, for K < H, we see that the sum over L is independent of z and we obtain

¢ _|G:Ng(H)

C(H,®) = ‘GI Z |K|M(Ka H)[K,IQSE(GH)]G. (14)

K<H
Substituting ay = de[NG(H)/NG(H )] geg and using the same argument as above, we obtain the

formula in (9). In order to prove the formula in (10) it suffices to show that resf(ell) = 0 if
®|x ) # 1. Substituting the formula (5) for eq,7 we obtain

restt(ell) | Z ®(p K - (15)

bEH~



Note that K = ker(res!l : H* — K*) and choose for every ¢ € im(res!) < K* an element ¢) € H*
with | = 1. Then the right hand side in (15) is equal to

Flﬂ 3 walxlwzﬁ S @)Y e ),

peim(restl) Ne K+ peim(restl) XK+

and it suffices to show that >, 1 ®|x2(A7!) = 0. But

> Bl (A =K Kt Nker(®)] > Dl (A7), (16)
AEKL AeKL /(KLnker(®))

with an injective homomorphism from @[ 1 : K+/(K+nNker(®)) — K*. Tt follows that K+ /(K+n
ker(®)) is cyclic, say of order n. Our assumption on K implies that K has a primitive n-th root of
unity. Moreover, since ®|x1 # 1, we have n > 1. Thus the sum on the right hand side of (16) is
equal to the sum of all n-th roots of unity in K, which is 0. This proves Equation (10). Formula

(11) is now immediate after substituting the formula for eZ.

3.3 Remark If A’ is the trivial subgroup of A we have B (G) = Bx(G), the Burnside algebra
over K. Using the functoriality properties in 2.2(c), we obtain a commutative diagram

() 1 K I 0

BHG)S( T KH)—=( 1K)
H<G (H,®)€X(G)
of K-algebra homomorphisms, where the left horizontal maps are the mark isomorphisms m¢ from
(7) given by (7 ores$), the right top horizontal map is the identity, the right bottom horizontal
map is the product of the isomorphisms from (4), the middle vertical map is the product of the
unique K-algebra homomorphisms K — KH*, and the right vertical map is induced by the G-
equivariant map X(G) — {H < G}, (H,®) — H, between the indexing sets. We denote the
primitive idempotents of Bg(G) by €%, for any H < G. Thus, by the above commutative diagram,

€G = > (G- (a7)
dcHom(G* ,KX)

3.4 Lemma For any x € B#(G) one has €& - x = 0 if and only if ng(x) = 0.

Proof Since mq: B (G) = [[4<¢ K is injective and multiplicative, one has e - 2 = 0 if and
only if mg(e&) - mg(z) = 0. But mg(e&) has entry 1 in the G-component and entry 0 everywhere
else. Thus, €& - x = 0 if and only if the entry of m(z) in the G-component is equal to 0. But this
entry equals (). U



4 Elementary operations on primitive idempotents

Throughout this section we assume as in Section 3 that G is a finite group such that S* =
Hom(S, A) is finite for all subquotients S of G, and that K is a field of characteristic 0 which is a
splitting field of S* for all subquotients S of G.

In this section we will establish formulas for elementary fibered biset operations on the primitive
idempotents of BZ (S) for subquotients S of G. These formulas will be used in later sections.

4.1 Proposition Let H < G.
(a) For (L,V) € X(H) one has squ,) ores§ = 5&7@): B£(G) — K.
(b) For (K,®) € X(G) one has
resfi(eCica) = D elLw:-

(L, W)E[H\X (H)]
(L, ¥)=c(K,®)

(c¢) For ® € Hom(G*,K*) and H < G one has resg(e(GG,q))) =0.

Proof (a) We use the point of view from Remark 2.4. By [BRV19, Equation (13) and Theorem 6.1]
the left square in

BAG) e T KK*— I K
K<G (K,®)eX(G)

G
resy;

BA(H)-M 5 T KI*— [ K
L<H (L, W)eX (H)

is commutative, where the left horizontal maps are the mark homomorphisms from (7), the right
horizontal maps are given by the isomorphisms in (4), and the middle and right vertical maps are
the canonical projections. Since the right hand square commutes as well, following up with the
projection onto the (L, ¥)-component of H(L’\I,)ex(H) K, yields the result.

(b) Since res: B¢ (G) — BZ(H) is a K-algebra homomorphism, res§ (e x ¢)) is the sum of
certain primitive idempotents e{i,q,), (L, ) € [H\X(H)]. Moreover, egﬂ,) occurs in this sum if
and only if s{i&)(resg (e(GK@))) # 0. The result follows now immediately from (a).

(¢) This follows immediately from Part (b). U

4.2 Proposition Let N <G.

(a) For (H,®) € X(G) on has S(GH,<1>) o infg/N = S(GI;%/N,@N)’ where O = Pov*oa* €
Hom((HN/N)*,K*) with a: H/(H N N) = HN/N denoting the canonical isomorphism and
v: H— H/(H N N) denoting the canonical epimorphism.

(b) For (U/N,¥) € X(G/N) with N < U < G, one has

. G/N
g (€(g) ) = > (.0 -
(H,2)€[G\X(G)]
(HN/N,®N)=g/n(U/N,¥)



Proof (a) We use again the point of view from Remark 2.4. By [BRV19, Equation (12)] applied
to D :={(g,9gN) | g € G} <G x G/N and [BRV19, Theorem 6.1] the left square in

BAG/N)ZEN [T KWU/N)* —s 11 K
NLUKLG (U/N,%)eX(G/N)

BAG) —2¢s ] KH* —— [ K
HLG (H,®)eX(Q)

is commutative, where the left horizontal maps are the mark homomorphisms from (7), the
right horizontal maps are given by the isomorphisms in (4), the middle vertical homomorphism
maps the family (ay/n)v<v<a to (infg/(HmN)(a*(aHN/N)))H<G with a: H/(HNN) = HN/N
denoting the canonical isomorphism, and the right vertical homomorphism maps the family
(aw/N,w))(U/N,w)ex(c/n) to the family (a(gn/n,oy)) (H,8)ex (@) Since the right hand square com-
mutes as well (note that infg/(HﬂN) :K(H/(HNN))* - KH* is he K-linear extension of v* from
(a)), following up with the projection onto the (H,®)-component of H(H@)ex(c) K, yields the
result.

(b) Since inf& G/N: B£(G/N) — B (G) is a K-algebra homomorphism, infg/N(e(GU/;\J[V,‘y)) is the
sum of certain primitive idempotents e(H gy (H,®) € [G\X(G)]. Moreover, e(GH)q)) occurs in this

sum if and only if s(GH’q))(infg/N( (U//N \I,))) # 0. Part (a) now implies the result. U

4.3 Proposition Let N < G.

(a) For all (H,®) € X(G), there exists m&;™, € K such that

(H )
G,N
defg/N(e(GH,<1>)) = Mg g 'e(GHN/N,ch) (18)

with @y defined as in Proposition 4.2(a).
(b) For all ® € G* one has

an _ |(G/N)|

N R 1
MGe) = Mo T |G er| > IK[- K- u(K,G) € Q. (19)
K<G
KN=G
@1 =1

Proof (a) For any = € B#(G/N) we have

€ defg/N(e(GH,cp)) = defg/N(infg/N(m) : e(GH,<I>)) = defg/N(s(GH,cb)(infg/N(x)) ) e?H <1>))
N G/N
= def& N (sCnnan) (2) " €5r0)) = SN w .oy (@) + defG n (€ a)

In fact, the first equation follows from the Green biset functor axioms (see [BRV19, Defini-

tion 7.2(a)] and [R11, Definicién 3.2.7, Lema 4.2.3]), the second from (8), and the third from
Proposition 4.2(a). Choosing z = e(GI;]NV/N,':I)Ny and reading the above equations backward, we

obtain
defg/N(e(GH,q))) = defg/N(e(GH,<I>)) : e?HN/N,<I>N) .

10



Now, (8) implies the result with m(GH@) = s(GIé%/N)q)N)(defg/N(e?H,é))).
(b) Substituting the explicit idempotent formula (11) for e(GG’(I)) and using the explicit formula
for def§ G/N: BE(G) — B£(G/N) from 2.2(c), the left hand side of (18) is equal to

@ S > KK GO ) [EN/K, élxlan

K<G  $eG*
Pl1=1 ¢|xnn=1

where (g\\;;(kN) := ¢(k) for k € K. Moreover, using the explicit formula (11) for e(GG{%V o) the
right hand side of (18) is equal to

N
S Y NN, G/N) @ (6 [U/N, Yl
GNTIGNT 2 2

(bN‘(U/N)J_Zl

Next we compare the coefficients at the standard basis element [G/N, 1]¢/n of B£(G/N) on both
sides. On the/lgft hand side, we only have > to sum over those K < G with KN = @ and those
¢ € G* with ¢|x = 1. By the definition of @|f, this is equivalent to ¢ € K+. But then ®|1 =1
implies that ®(¢~') = 1 for all such ¢. Thus, the coefficient of [G/N, 1],y on the left hand side

of (18) is equal to
1

W Z |K| |Kl|#(K7G)'

K<G
@[, 1 =1
KN=G

On the right hand side of (18) only the summands with U = G and ¢ = 1 contribute to the
coefficient of [G/N,1]¢/n and this coefficient evaluates to mé\éyq))/|(G/N)*|. The result follows. []

4.4 Proposition Let H be a subgroup of G and let (K, V) € X(H). Then

G H _ INe(K, )| &
de(e(K,qJ)) = m TE(K,T) -

Proof This is an immediate consequence of the explicit formula in (11), since indg([L7 Olm)

[L, ¢)¢ for any (L, ¢) € M(H). E]

4.5 Proposition (a) For every isomorphism f: G = G’ and (H,®) € X(G) one hasisos (e(GH@)) =

G
(f(H),@o(flu)*)"
(b) For every g € G, H < G, and (K, ¥) € X(H) one has * e(K v) =

"K "\1/)

(c) For every (H,®) € X(G) and a € G* one has tw, /(e (H@)) = ®(a|g) e’ €(i,e) and A(e(H 8)) G
two = O(alpy) A(e?H’q,)), with A as in 2.1(c).
Proof All three parts follow immediately from the explicit formulas for the three operations in
2.2(c), the explicit idempotent formula (11), and the formula in (3).
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5 Three lemmata

Throughout this section, G and H denote finite groups and K a field of characteristic 0 such that
S* is finite and K is a splitting field of S* for all subquotients S of G and H.

For U < G x H we set q(U) :=U/(k1(U) x ko(U). Thus, q(U) = p;(U)/k;(U) for i =1,2.

5.1 Lemma Let G and H be finite groups and let k be a commutative ring. For (U, ¢) € M(GxH)
with p1(U) = G and pa(U) = H the following are equivalent:

(i) There exists o € G* such that ali, () = ¢1.
ii) There exists 3 € H* such that f|,w) = ¢2.
ili) There exists ¢ € (G x H)* such that ¥|y = ¢.

iv) In the category C*, the morphism [GUXf } factors through q(U).

(
(
(
(v) In the category Ci}, the morphism {%} factors through q(U).

Proof Clearly, (iii) implies (i) and (ii).

We next show that (i) implies (iii). Let o € G* be an extension of ¢;. Since ¢ € U* and
ax1e (G x{1})* coincide on U N (G x {1}) = k1 (U) x {1} and since G x H = (G x {1})U with
G x {1} normal in G x H, the function ¢: G x H — A, (g,1)u — a(g)p(u) is well-defined and
extends ¢. It is also a homomorphism, since G x {1} is normal in G x H and « x 1 is U-stable.

Similarly one proves that (ii) implies (iii).

Next we show that (iii) and implies (iv). Let ¥ = a x 8 € (G x H)* extend ¢ € U*. By (3),
we have

GxH _ Gx H ¢
Uo |~ Vea|l U1 |a P

and the morphism {GUXfI} factors through G/k1(U) by Theorem 2.3.

Clearly, (iv) implies (v).

Finally, we show that (v) implies (iii). Assume that GUXf factors in C{! through K := q(U)

with K = G/ki(U). Then there exist (V,¥) € M(G x K) and (W, p) € M(K x H) such that
[GXH GXK} ) {KXH

U,¢ Vi W.,p
that there exists t € K such that ¥s|x, = p1|x, with Ky := ko(V) N k(W) and (U, ¢) (V
EOW, 4« BDp). Replacing (V, 1) with OV, ) and (W, p) with “"(W, p), we may assume that
there exist (V1) € M(G x K) and (W, p) € M(K x H) with 92|k, v)nk, (W) = P1lks(v)nk, (w) and
(V« W, *p) = (U, ¢). By [Bel0, 2.3.22.2] one has

] occurs with nonzero coefficient in [ } By the formula in (3), this implies

_ (9,h)

(V) < B (V £ W) =k (U) < pr(U) < pa (V).

Since p1(U) = G, this implies that p; (V) = G. Moreover, since p1(U)/k1(U) is isomorphic to a
subquotient of p1 (V) /k1 (V) = p2(V)/k2(V), which in turn is a subquotient of K = p(U)/k1(U),
we otain that ki (V) = k1(U), p2(V) = K and ko(V) = {1}. Since 9o = 1, it extends trivially to
K = py(V). By the first part of the proof (note that p; (V) = G and p3(V) = K) we also obtain
that ¢ extends to @ x 1 € (G x K)* for some o € G*. Similarly one shows that p extends to

12



1x B e (K xH)* for some 5 € H*. But then ¢ = ¢ *p is the restriction of (ax 1)+ (1x3) =axf
and (iii) holds. U

5.2 Lemma Let (U, ¢) € M(G x H).

(a) If ® € Hom(H*,K*) satisfies [GUX—;I} H egq o) 7 0 then p2(U) = H and ¢ extends to H*.

(b) If ® € Hom(G*,K*) satisfies e(GG’q)) ge. {GXH} # 0 then p1(U) = G and ¢; extends to G*.

Proof We only prove Part (a). Part (b) is proved similarly.

Since [GUXf} = {Gxng[])} “pa(U) resg(U), Proposition 4.1(c) implies that po(U) = H.

We will show that ¢ extends to H by induction on |G|. If |G| = 1 then ¢; is trivial, thus

extends to G, and Lemma 5.1 implies that ¢ extends to H. From now on assume that |G| > 1.
We distinguish two cases.

Case 1: g ({%} ‘H e{ﬂ{,@)) = 0. By Lemma 3.4, this implies that e - ({G(}((f} H e{i[,@)) =
0 and therefore, using the primitive idempotents e% of the Burnside ring (see Remark 3.3) and

[CY19, Proposition 2], we have

o4 [S2] st (S22 o)

U,¢
Gx H Gx H
G H G H
= E €K ([ ] : e(H,q»)) = E Alef) - ({ } : e(H,cp)) .
Ke[\8(C) ve I Kel\8(@)] G\l Ue [n
K<G K<G

Moreover, using the explicit formula for e?( (in the special case that A is trivial), we have

o# T8 it < X [l o ([T | et

K<G

-LE <[GX>?1]6:[GUT¢H]> “ln = 2 - {GXUHMﬁ] “ln)-

K<G K<G

Therefore, there exists K < G such that [%} H egq‘q,) # 0. Note that p; (A(K)*U) < K
so that we can decompose

Gx H _ ind€ KxH
AK) «U1xd| Kk |AEK)=U1x¢]
Thus

)

KxH 20
A(K )*U1*¢H<H‘1’> '
By the first part of the proof this implies that po(A(K) « U) = H. Moreover, it is straightforward

to verify that ko(A(K)xU) = ko(U) and that (1% ¢)a = ¢o € ko(U)*. Since K < G, the inductive
hypothesis applied to (20) yields that ¢ extends to H.

(20)
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Case 2: mg ( [GUXf} ‘H egf’@)) # 0. The explicit formula for 65{@) in (11) implies that

> ¥ Kl oo (|G i vlidn ) £0.

. U,¢
K<H +veH
<I>‘KJ_:1

Thus, there exists K < H and ¢ € H* such that mg ([G[]Xf] ‘H [K,w\K]H) # 0. This implies

that U * K = G and ¢a|i,)nx = Y|k, u)nk- Since ¢y is stable under py(U) = H and ¢ and
coincide on ko(U)N K, there exists an extension 8 € (ko(U)K)* of ¢2 and . Moreover, UxK = G
implies ko(U)K = H. In fact, if h € H = py(U) then there exists g € G with (¢g,h) € U. Since
g € G =U=xK, there exists k € K such that (g,k) € U. But then hk~! € ko(U) and h € ka(U)K.
This completes the lemma. U

5.3 Lemma Let (U, ¢) € M(G x H), ® € Hom(G*,K*) and ¥ € Hom(H*,K*). Then

Gx H
G H _
e“*‘”'([ U0 ]He“”“) =0

unless p1(U) = G, p2(U) = H, ¢ has an extension a x 3 € (G x H)*, @ vy = Yy, (w) o0y, and

m’(“z(g # 0, in which case one has

GxH ka (U
oo ([ s elim) = (@ WIS e

Proof Assume that G H
X
e(GG,<1>) ’ (|: U. (b :|Heg{,\ll)) 7é 0 (21)

By Lemma 5.2, po(U) = H and ¢y extends to H. Assume p1(U) < G. Then [%} -egq’q,) is in the
K-span of elements of the form [Ux L, 9|q, with L < H and ¢ € (UxL)*. Since UxL < p1(U) < G
we obtain mg(eg,a) - [U * L, ¥]a) = ma(e,a)) - ma([U * L,¢]a) = 0, because the first factor
vanishes in the components indexed by proper subgroups of G and the second factor vanishes
in the G-component. By the injectivity of m¢ this implies that the element in (21) vanishes, a

contradiction. Thus, p;(U) = G. By Lemma 5.1, ¢ has an extension o x 8 € (G x H)*. Further,

GxH GxH
G H _ G H
e ([ U, ¢ ] ire“”)) G (t“’“c': { U1 } Htw[’ée“”“’))

GxH "
o1 )™t

_ G
= Ale@.e)) tWa

where the last equation follows from [CY19, Proposition 2]. By Proposition 4.5(c) we have twg - g

e&,yqj) = twa(eg{&)) =¥(p) - e&,’q}) and A(e(GG@)) ‘G twy = O(a) - A(e(GG@)). Thus, using again
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[CY19, Proposition 2] and Theorem 2.3,

GxH GxH
ela.a) - ({U@b} Heg{»‘l’)> = (a)¥(B) - Ales.a)) : {Ul} Hefi{,m
GxH

=] - defy el
G/kl(U)[ U,1 :|H/k2(U) © H/kz(U)He(H,\I/)>

= @(O{) \I](ﬁ) G(G,.@) . <infg/k1(U)

N . G . H H

=)V Bece <mfG/k1(U) ) O k) ST H A2 () ﬁe(H"”)
with 1y : H/ky(U) = G/k1(U) the isomorphism induced by U (see [Bc10, Lemma 2.3.25]). Using
Propositions 4.3(a), 4.5(a) and 4.2(b), we obtain

Gx H ko (U
B(GG,<1>) : <[U¢] ;Iegi,\lf)) = ®(a) ¥(B) m(zzf(,q;)) Z e(e,o) '6(GK,@)7 (22)
’ (K.©)

where the sum runs over those (K,0) € [G\X(G)] satisfying (Kk1(U)/k1(U), Ok, ) =c/k: ()
(G/k1(U), ¥pywy o myr). Since the term in (22) is nonzero, one of these pairs (K, 0) must be
G-conjugate, and then also equal, to (G, ®). This implies the result. U

6 The constant m%@)

Throughout this section, G and H denote finite groups and K denotes a field of characteristic 0
such that for any subquotients S of G and T of H the groups S* and T™ are finite and K is a
splitting field for S* and T*.

In this section we prove the crucial Proposition 6.4 stating that mé‘é’q)) = Mg ) if
(G/M, @) = (G/N,Py) (see Definition 7.3(a)).

6.1 Proposition Let N and M be normal subgroups of G with N < M and let ® € Hom(G*,K*).
Then MN
M N
MG.e) = MG.e) "GN aN)
Proof This follows immediately from Proposition 4.3(a) and applying isos o def(cngN) /(M) ©

defg/N = defg/M to e(GG@), where f: (G/N)/(M/N) — G/M is the canonical isomorphism. [

6.2 Lemma Let f1, fo: G — H be group homomorphisms, let ® € Hom(G*,K*), and let K < G
be such that ®|x. =1 and fi|k = fa|k. Then ® o ff = o f5 € Hom(H*,K*).

Proof Let A € H*. Then (®o f{)(A) = (Po f5)(A) if and only if (Ao f1) = ®(Ao f2) which in turn
is equivalent to ®((Ao f1)- (Ao fo)~1) = 1. But, since fi|x = f2|x, we have (Ao fy)-(Aofe)™! € K+
and since @| 1 = 1 the result follows. U
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6.3 Proposition For ® € Hom(G*,K*) and normal subgroups M and N of G one has

1 KNM)N/N
mibe = 2 K G Sy ImG ey
R
KN=KM=G
Pl =1

Where EMN is the set of elements ¢ € G* such that ¢|xnmnn = 1 and such that there exists
((G/M) (G/N))* with ¢(kM,kN) = ¢(k) for all k € K.

Proof Consider the element

_ G/M G G e G/N A
V= G /M) (defG/M LAleGe) )y N €(G/N7¢N)> € B{(G/M).

Then, on the one hand,

G/M
v= mé\év"b)e(G{/M,ch) € B (G/M). (23)
In fact, by [CY19, Proposition 2] and Proposition 4.2(b),
G e G/N e LG/N o
A(e(G,{Z')) élnfG/N G}N e(G/N,'i‘N) = e(G,@) (lnfg/N (G/N ¢’N)) e(G,@) R

and ’;)hen Proposition 4.3(a) implies (23). On the other hand, using the formula in (11) for e(GG’q))
we obtain

-1 G/N
v = Z Z |K| (K, G) (¢ ) G/M<I>M) (K¢G)N6(G/N,<I>N)> (24)
K<G ¢eG*
<1>|KL 1
with
G/MxG/N if ¢ -1
TR,y = defg/MGA([K7¢|K]G)G1nfg/N = l: Aj\Kl N? :l ) |KOMON )

0, otherwise,

for K < G with ®|x. = 1, by the formula in (3), where, in the first case, AY; y = {(kM,kN) |
ke K} and §((kM,kN) = ¢(k) for k € K. Note that Ax = ki (A% \) = (K 1 N)M/M,
B = kg(AﬁJ\/) = (KNM)N/N, pl(AﬁN) = KM/M, and pQ(AJ\K/LN) = KN/N. Lemma 5.3
implies that, if the term e(GG{%/I@M) (Ko N e(G(,{;\JfV,@N)) in (24) is nonzero then KM = G = KN,
dlkrmnn = 1, and ¢ extends to some 1 = a x B € ((G/M) x (G/N))*. Then the formula in
Lemma 5.3 yields

1
" ar e ) Y. KIp(K.G)2(6) Parlar.e) O (Br.s) & o)
K<G ¢621\K/1 N
KM:G:KN
@‘KJ_zl
a/M
TG /M ) (25)

where, for K and ¢ as above, ak ¢ € (G/M)* and Sk 4 € (G/N)* are chosen such that ax 4 X Sk ¢
is an extension of ¢. Denoting the inflations of ak . and Br .y to G by dr .y € and By, We have

(6" )Pur(ok,6) PN (Brg) = B¢k pBrs) = 1
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since &K,¢(k)BK,¢(k) = OLK@(]{IM)ﬂK’d)(kN) = gf_)(kM, kN) = d)(k) for all k € K and (b|KL = 1.
Thus,

1 K B G/M
v= 1G]~ 1G] Z ‘EM,N| |K| (K, G) m(GK/N_@N) €(G/M, @) (26)
KM aGo kN
P L=1
Comparing Equations (23) and (26), the formula for mé‘éﬂ,) follows. U

6.4 Proposition Let M and N be normal subgroups of G such that there exists an isomorphism
f: G/N = G/M and let ® € Hom(G*,K*) be such that ®y o f* = ®); € Hom((G/M)*,K*).
Then one has mé\é@) = m?&@).

Proof We proceed by induction on |G|. If |G| = 1 the result is clearly true. So assume that
|G| > 1. If M = N is the trivial subgroup of G then the result holds for trivial reasons. So assume
that M and N are not trivial. By Proposition 6.3 one has

1
Mo K (KNM)N/N
@) = a6 KZ:G K| (K G) [Z0 8GN )
KN=KM=G
and 1
N K (KAN)M/M
m(G,<I>) - |G| . |G*| K;G |K|M(K’G)‘EN’M‘m(G/M,d)M) .
KN=KM=G
(I)lKL =1

We will show that these sums coincide by comparing them summand by summand. Since E]\KJ, N =

ZﬁMv it suffices to show that mgg7NA4£1,X§N = Eé{/ﬂﬂ]/[vzbl\i/)z\/[. By Proposition 4.3(b), for any X' <
G/N we have
G/N)/X)*|
mX I LI |LH]| w(L, G/N)
(G/N®N) |G/N| - |(G/N)*] LéXG:/N
LX=G/N
(en)lp1=1
and |((G/M) /(X))
f(X) = )
. ) K| K (K, G /M) .
(G/M20) |G /M| - (G M) KSZG/N
Kf(X)=G/N
<I>M‘KJ-:1

Note that the summand for L in the first sum is equal to the summand for K = f(L) in the second
sum. Thus, with X = (K N M)N/N, we obtain

(KNM)N/N __ f((KNM)N/N)
(G/N,®x)  — "NG/M,® ) (27)

for any K < G with KM = G = KN and ®|g. = 1. It now suffices to find an isomor-
phism fi: (G/M)/f((K N M)N/N) = (G/M)/((K N N)M/M) such that (®ar)y((xnnmn/n) ©
FENM)N/N) _ (KNON)M/M

(G/M,® ) = MG/M,®u) and

i = (@M)(KmV)M/M7 since then, by induction, we have m
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together with Equation (27) this implies that desired equation. We define f; := 5o f~1

where f: (G/N)/((K N M)N/]\D — (G/M)/f((K N M)N/N) is induced by f and n :=
N (G/N)/((KNM)N/N) = (G/M)/((K N N)M/M) is induced by AF; v := {(kM,kN) |
k € K}, see [Bcl0, Lemma 2.3.25]. It remains to prove that

Povy o VJ*‘((KHJV[)N/N) off =®ovy 0 VEK(KHN)M/M) ) (28)
where vyr: G = G/M, vy grnynyn: G/M — (G/M)/f(KNM)N/N), and v(gnnynm/n s G/M —
(G/M)/((K N N)M/M) denote the natural epimorphisms. But f; = (f~1)* o n*, Vi (KAM)N/N) ©
(fH = (Y o V{gnnym > and ovy o (fY)*=®po(f1)*=dy = Pov). Thus, the left

*

hand side of Equation (28) is equal to ®ovy o Ve /v 00"+ By Lemma 6.2 and since ®[g. =1,
it now suffices to show that

(o vxnamyn/N © UN)IK = (V(knM)N/N O VN)|K -

But this follows from (kM,kN) € A}  for k € K, and the proof is complete. U

7 BA-pairs and the subfunctors E(]\é’@) of Bf

Throughout this section G denotes a finite group and we assume that K is a field of characteristic
0 which is a splitting field for KG* for all finite groups G. This is equivalent to requiring that, for
any torsion element a of A, the field K has a root of unity whose order is the order of a.

In this section we introduce the important subfunctors £ ¢ of B{g and study their properties.

7.1 Definition For any finite group G' and ® € Hom(G™*, K*) we denote by E(g ) the subfunctor
of B{g generated by e(GG ®) In other words, for each finite group H, one has

Ege)(H)={zcece) |z €BLHG)}.

7.2 Proposition For ® € Hom(G*,K*), the following are equivalent:

(i) If H is a finite group with Eq ¢)(H) # {0} then |G| < |H]|.

(ii) If H is a finite group with E(g ¢)(H) # {0} then G is isomorphic to a subquotient of H.
(iii) For all {1} # N < G one has mé\é@) =0.
(

iv) For all {1} # N < G one has defg/N(e(C’G@)) =0.

Proof That (ii) implies (i) and that (i) implies (iv) follows from the definitions. Moreover, that
(iii) and (iv) are equivalent follows from Proposition 4.3(a). So, it suffices to prove that (iii) implies
(ii).

Assume that (iii) holds and let H be a finite group with E(q ¢)(H) # {0}. By the definition

of E(,¢) this implies that there exists (U, ¢) € M(G x H) such that [HTEG} G e(GGﬁq)) # 0. The

canonical decomposition of [%Xf} from Theorem 2.3 implies that

(P/K) x (Q/L) o o .
g : f . .
|: Ua ¢ p2(U)/ ker(¢ps) de Q/L Q reSQ G e(Gy‘I’) # 0 )
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with P := p1(U), K := ker(¢1), Q := p2(U), L := ker(¢2), U corresponding to U/(K x L) via
the canonical isomorphism (P x Q)/(K x L) = (P/K) x (Q/L), and ¢ € (U)* induced by ¢.
Proposition 4.1(c) implies that G = @, and then Proposition 4.3(a) implies that L = {1}. Thus,

p1(U) =P/K, p2(U) =G, ka(U) = {1} and
P/K x G
e 20

Lemma 5.2 implies that (¢) extends to G’ and Lemma 5.1 implies that b extends to some a x 8 €
((P/K) x G)* with « € (P/K)* and 8 € G*, since p1(U) = P/K and p3(U) = G. Further, we
have
(P/K)x Gl o (P/K) x G G
07 { U, ¢ G = Wa o U,1 PR R

with twg éefG’¢) = @(B)e(GG’q)) by Proposition 4.5(c). Thus, using the canonical decomposition of

[(P/g()xc
U1
ko(U) = {1}. But this implies that G = G/{1} = py(U)/k2(U) = p1(U)/k1(U) is isomorphic to a
subquotient of U, which is isomorphic to a subquotient of H. U

] as in Theorem 2.3 we obtain defg/kQ(U) G e(GG ) # 0. Proposition 4.3(a) implies that

Note that by the formula for mé\é ) in Proposition 4.3, the condition in Proposition 7.2(iii) is
independent of the choice of K as long as K has enough roots of unity.

7.3 Definition Let G and H be finite groups and let ® € Hom(G*,K*) and ¥ € Hom(H*,K*).

(a) The pair (G, ®) is called a BA-pair if the equivalent conditions in Proposition 7.2 are
satisfied.

(b) We call (G, ®) and (H, V) isomorphic and write (G, ®) = (H, U) if there exists an isomor-
phism f: H = G such that ¥ o f* = ®. Note that if (G, ®) = (H, V) then Ee) = Enw). In
fact, if f: H = G satisfies U o f* = ® then isof(eg[)\l,)) = e(GG)(I,), by Proposition 4.5(a).

(c) We write (H,V) < (G, ®) if there exists a normal subgroup N of G such that (H,¥) =
(G/N,®y). The relation < is reflexive and transitive. Moreover, if (H, ¥) < (G, ®) and (G, ?) <
(H,P) then (G,®) = (H,¥). Thus, < induces a partial order on the set of isomorphism classes
[G, ®] of pairs (G, ®), where G is a finite group and ® € Hom(G,K*). We denote this relation
again by <. This partial order restricts to a partial order on the set B4 of isomorphism classes of
BA-pairs.

7.4 Proposition Let G and H be finite groups and let ® € Hom(G*,K*) and ¥ € Hom(H*,K*).
(a) If (H7 \I’) < (G7CI)) then E(G,@) g E(H’\p)
(b) If (H,¥) is a BA-pair and EG.e) C E(y,v) then (H, V) 5 (G, ®).

Proof (a) Let N < G and let f: H = G/N be an isomorphism with W o f* = ®y. Then, by
Proposition 4.5(a) and Proposition 4.2(b), we have

el.0) = €{a.a) - (InfG/y N iso He{fq,@)) € Epu(G),

so that B¢ e) C Em,v)-
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(b) Since E¢ ¢y € E(x,wv), we have e(%@) € E(u,w)(G) and there exists (U, ¢) € M(G x H)

such that O
X
04 G g ({ngs }Hegw» . (29)

Lemma 5.3 implies that pi(U) = G, p2(U) = H, ¢ extends to some a x 3 € (G x H)*, @, ) =
Uy, 0y 0ny, and me(g)) # 0. Since (H, ¥) is a BA-pair, we obtain ky(U) = {1} and ®y, 1) = Pony;.

Thus, ny is an isomorphism H = G/ki(U) with @, ) = ¥ onj;, so that (H,¥) < (G, ®). U

8 Subfunctors of B

We keep the assumptions on K from Section 7. In this section we prove one of our main results,
Theorem 8.8, which describes the lattice of subfunctors of B# in terms of the poset (B4, <).

8.1 Definition Let k£ be a commutative ring and F € ka. A finite group G is called a minimal
group for F' if G is a group of minimal order with F'(G) # {0}.

For any finite group G, the group Aut(G) acts on X(G) via (K, ) := (f(K),¥ o (f|x)*).
We will denote by X(G) C X(G) the set of those pairs (K, ¥) with K = G. Note that X(G) is
Aut(G)-invariant and that G acts trivially by conjugation on X(G), so that X(G) can be viewed
as an Out(G)-set.

8.2 Proposition Let F' be a subfunctor of B in F.
(a) For each finite group G one has

FG)= @D Ko,
(K, 9)€[G\Xr (G)]

where Xp(G) := {(K,¥) € X(G) | ¢fic ) € F(G)}.
(b) For any finite group G, the set Xr(G) is invariant under the action of Aut(G).

(c) Suppose that H is a minimal group for F, i.e., of minimal order with F(H) # {0}. Then
Xp(H) contains only elements of the form (K, U) with K = H. Moreover, each (H, V) € Xp(H)
is a BA-pair and one has Eimw CF.

Proof (a) Foralla € F(G) and z € B (G), [CY19, Proposition 2] implies 7-a = A(z)-ga € F(G).
Thus, F(G) is an ideal of B#(G). Since the elements e(GK,@) with (K, ©) € [G\X(G)] form a K-basis
of B#(G) consisting of pairwise orthogonal idempotents, the assertion in (a) follows.

(b) If effc gy € F(G) and f € Aut(G) then eff ) yo(s,0)-) = 1507 (i wy) € F(G).
d(c) Assume that H is a minimal group for F' and that (K, ¥) € Xp(H). Then 65(7\11) € F(H)
an
0# e(lg(’q,) = e([g(’q,)resg(eg(yq,)) € F(K),
by Proposition 4.1(b). The minimality of H implies X' = H. By Proposition 4.3(a), the minimality

also implies that m%{"p) =0 for all {1} # N < H, since egq,\y) € F(H). Clearly, Egw) C F. U
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8.3 Definition Let F' be a subfunctor of BH‘Q in .Ffé. If H is a minimal group for F' and
U € Hom(H,K*) is such that (H,¥) € Xp(H) then we call (H, V) a minimal pair for F'. By
Proposition 8.2(c), each minimal pair for F is a B4-pair.

8.4 Proposition Let H be a finite group, ¥ € Hom(H*,K*), and let (G, ®) be a minimal pair
for E(yvy. Then:

(a) Erw) = Ec,9)-
(b) There exists N < H with m(H\I, # 0 and (H/N,¥y) = (G, ®). In particular (G, ®) <
(H,¥). Moreover, if also N' < H satisfies (H/N', ¥ /) = (G, ®) then mf\qu,) = mé\g,‘l}) # 0.

(c) Up to isomorphism, (G, ®) is the only minimal pair for E( y).

(d) If (H, W) is a BA-pair, then, up to isomorphism, (H, ¥) is the only minimal pair of Egw)-
In particular,

B (H) = b Keltr gy -
(H,¥')eX(H)
(H, ¥ )=0ue(a) (H,¥)

Proof (b) Since (G,®) is a minimal pair for E(y y), there exists € BZ(G, H) such that
e(GG’q)) = 7 -g e(q,w)- Multiplication with e(GG,q)) yields e(GG’q)) = e(GGA,) (xm eg{’\y)). Thus,
there exists (U, ¢) € M(G x H) with

GxH
o ([T | acthm) #0.

Lemma 5.3 implies that p;(U) = G, ¢ has an extension to G x H, @ ) = Yy, ) © 0y, and

kil lé,)) # 0. Since ¢ has an extension to G x H, {GUXf} factors through ¢(U) = G/ki1(U) by
Lemma 5.1. Since G is a minimal group of E(y ) this implies k1 (U) = {1}. Set N := kp(U) < H.
Then ny: H/N = G satisfies Uy onf, = ®. If also N’ < G satisfies (H/N', U /) 2 (G, ®), then
(H/N,V /)= (H/N,¥y) and we obtain m?}}yq,) =m{y g # 0 by Proposition 6.4.

(a) Note that Eg.e) € E(m,w) by Proposition 8.2(c). The converse follows from Proposi-
tion 7.4(a) and Part (b).

(c) Assume that also (G’,®’) is a minimal pair for £y ¢) = E(g,4). Then, by Part (b) applied
o (G',®') and (G, ®) in place of (G, ®) and (H, V), we have (G',?’) < (G, ®). Since both G and
G' are minimal groups for E(g ), they have the same order. Thus, (G', ®') = (G, ®).

(d) Now assume that (H,¥) is a B“-pair and let (G, ®) be a minimal pair for (). Then,
by Part (b), there exists N < G with mé\&\p) # 0 and (H/N,Uy) & (G,®). Since (H,V) is a
BA-pair, this implies N = {1} and (H, ¥) = (G, ®). U

8.5 Notation For any finite group G and any ® € Hom(G*, K*) we denote by 3(G, ®) the class
of all minimal pairs for Eg ¢y. Thus 3(G, ®) is the isomorphism class [H, ¥] of a BA-pair (H, V).
Note that 8(G, ®) < [G, ®] by Proposition 8.4(b).

The following proposition is not used in this paper, but of interest in its own right. It is the
analogue of [Bc10, Theorem 5.4.11].
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8.6 Proposition Let G be a finite group and let ® € Hom(G*,K*).
(a) If (H, W) is a BA-pair with (H, V) < (G, ®) then [H, V] < B(G, ®).
(b) For any N < G the following are equivalent:
(i) m(G @) # 0.
(ii) (G, ®) < [G/N, Pn].
(iii) B(G, @) = B(G/N, ).
(¢) For any N < G the following are equivalent:
(i) [G/N. ®x] = B(C, D).
(ii) (G/N,®y) is a BA-pair and mf\é@) #0.
Proof Let (K,0) € 3(G,®). Thus, E¢ ) = Ex,e) by Proposition 8.4(a) and (K,0) is a
BA-pair.
(a) Let (H,¥) be as in the statement. Then Ex oy = E(g,e) € E(m,s) by Proposition 7.4(a).
Now Proposition 7.4(b) implies (H, V) < (K, ©).
(b) (i)=-(ii): Since mé\é’q)) # 0, Proposition 4.3(a) implies that

G
(G{%v on) = = (m{G.a))” 1defg/1v(€(%,¢>)) € E.2)(G/N) = Ek ) (G/N)

so that Eg/n,ey) € E(k,e). Proposition 7.4(b) implies (K,¥) < (G/N, ®y).

(il)=-(iii): By Part (a) applied to (K,0) and (G/N,®y) we obtain S(G,®) = [K,0] <
B(G/N,®y). Conversely, we have 5(G/N,®y) < [G/N,®y] = [G,®] and Part (a) again im-

(ili)=-(i): By Proposition 8.4(b) there exists M < G such that mfvé e # 0 and
[G/M, @] =2 B(G,®). Similarly, there exists N < M’ 4 G such that mé\é//]yq)m # 0 and
[(G/N)/(M'/N),(®x)m] = B(G/N,®x). Since

[G/M", @] = [(G/N)/(M'/N), (2n) ] = B(G/N, ) = B(G, ) = [G/M, D],

Proposition 6.4 implies that mé‘g@) = mé‘é@) # 0. By Proposition 6.1 we have mf‘g’@) = mé\é’@) .
mf‘é/N@N) which implies that mé\&@) # 0.

(c) This follows immediately from the equivalence between (i) and (iii) in Part (b), noting that
B(G/N,®y) = (G/N,®y) if (G/N,®y) is a BA-pair and that B(G, ®) consists of BA-pairs. [

8.7 Definition A subset Z of the poset B4, ordered by the relation < (cf. Definition 7.3), is
called closed if for every [H, V] € Z and [G, ®] € BA with [H,¥] < [G, ®] one has [G, ®] € Z.

8.8 Theorem Let S denote the set of subfunctors of Bi in F#, ordered by inclusion of sub-
functors, and let T denote the set of closed subsets of B4, ordered by inclusion of subsets. The
map

a:S—T, Fw{[HY eB* Eyy CF}

is an isomorphism of posets with inverse given by

B:T =8, Z Y Euw)-

[H,V]eZ
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Proof Clearly, o and g are order-preserving. Let F' € S. By Proposition 8.2(a) we have

F= Z <6(GH,‘I/)> )

G
(H,¥)eXr(G)

where G runs through a set of representatives of the isomorphism classes of finite groups and
<e(GH7\I,)> denotes the subfunctor of B generated by e(GHV,Ij). For any finite group G and any (H, ¥) €

X(G) one has e(C'VH&) € F(G) if and only if egq’\p) € F(H). In fact, 651,\11) = e(H,v) - resg(e?H"p))
by Proposition 4.1 and efH’qj) ek indg(eg{ \I,)) by Proposition 4.4. Thus

F= Z Emwy,

HA
(H,¥)eXr (H)

where H runs again through a set of representatives of the isomorphism classes of finite groups
and Xp(H) = X(H) N Xp(H). By Propositions 8.2(c) and 8.4(a), we obtain

F= Y Buw= > Euw=50(F)),
[H,v]eB” [H,¥]ea(F)
(H,v)eXp(H)
since (H,V) € Xp(H) if and only if By ¢) C F.
Let Z be a closed subset of B4. By definition of a and 8 we have

a(B(2)) ={[H,V] € B* | Eggu) C Z Eqge)}-
[G,®lez

The inclusion Z C a(B(Z)) is obvious. Conversely, assume that [H,¥] € B4 satisfies E(;g) C
>o¢8)cz E(G,3)- Evaluation at H and Proposition 8.2(a) imply that there exists [G, ®] € Z with
eg{’q,) € E(g,¢)(H), which implies E(s,4) C E(g,a). Since (G, ®) is a B*-pair, Proposition 7.4(b)
implies [G, @] < [H, ¥]. Since [G,P] € Z and Z is closed we obtain [H, ¥] € Z. Thus, a(8(Z2)) C
Z, and the proof is complete. U

8.9 Remark (a) If (G,®) is a B“-pair, then the subfunctor E(g ¢) of Bf corresponds under

the bijection in Theorem 8.8 to the subset BQ[G@] = {[H,V] € BA | [G,®] < [H,¥]}. Clearly,

Bf[G,@] = {[H,¥] € BA | [G, ®] < [H,¥]} is the unique maximal closed subset of BQ[G@].

(b) For every element [G,®] € B4 there exist only finitely many elements [H, ¥] € B4 with
[H,¥] X [G, ®]. Therefore, every non-empty subset of B4 has a minimal element.

9 Composition factors of Bﬁ

We keep the assumptions on K from Section 7. In this section we show that the composition factors
of B{g are parametrized by isomorphism classes of B4-pairs.
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9.1 Recall from [BC18, Section 9] that the simple A-fibered biset functors S over K are
parametrized by isomorphism classes of certain quadruples (G, K, k, V). Here, G is a minimal group
for S, (K, k) € M(G) is such that the idempotent f(x ) € Bg (G,G) (see [BC18, Subsection 4.3])
does not annihilate S(G), and V := S(G) is an irreducible KI'(¢ x .)-module for the finite group
I'(a,x,x) defined in [BC18, 6.1(c)]. All we need for the analysis in the following theorem is that the
idempotent f(f ) is in the K-span of standard basis elements [GUXf] with (U, ¢) € M(G,G) such
that ko(U) > K, and that in the case (K, x) = ({1},1), the group I'(g {11,1) is the set of standard
basis elements [GxG] of BA(G,G) with p1(U) = G = ps(U) and ky(U) = {1} = ko(U). The

U,¢
multiplication is given by -g. Thus, in this case, GUXf} = twq -q isof, where f := ny € Aut(G)

is defined by U = {(nuv(g),9) | g € G}, and o € G* is given by a(g) = ¢(nu(yg),g) for g € G.
Mapping [GXG} to the element (o, f) € G* x Out(G) defines an isomorphism. Here, Out(G) acts

U,¢
on G* via fa := oo f*. Moreover, [(a,q13,1) acts on S(G) by .

9.2 Proposition Let (G,®) be a BA-pair. The subfunctor E(g,¢) of B has a unique maximal
subfunctor J(g,¢), given by

JGe) = > Euw-

[H,\II]EB’:[G&]

The simple functor S ¢) := E(c,e)/J(c,) is isomorphic to S(q 11},1,v,) Where Vg is the irreducible
K[G* x Out(G)]-module

1 G*xOut(G)
Vo = IndG*NOut(G)(p(Ki‘) )

with ® € Hom(G* x Out(G)g, K*) defined by ®(¢, f) := ®(¢) for ¢ € G* and f € Aut(G).

Proof By Remark 8.9(a) and Theorem 8.8, J(,) is the unique maximal subfunctor of Eq ¢).
Thus, the functor S := Sg 4) is a simple object in Fﬂ‘é. Moreover, G is a minimal group for S,
since G is a minimal group for E ¢) and £y v)(G) = {0} for all [H, V] € Bf[G e

Let (U, ¢) € M(G x G) with ko(U) # {1}. Then [GUXQSG} factors through the group ¢(U) which

has smaller order than G. Thus, [GUXf] e e(GVG@,) =0 for all (G,®’) € PE(G) with (G, ®") =out(c)

(G, ®). By Proposition 8.4(d) this yields [GUff] . S(G) = {0}. Thus, f(x.n) ¢ S(G) = 0 for all
(K, k) with |K| > 1.

This implies that S is parametrized by the quadruple (G,{1},1,V), with V = S(G) viewed
as KI'(g,{1y,1)-module. Since S(G) is the K-span of the idempotents e(GG@,), with (G, ®’) running

through the Out(G)-orbit of (G, ®), and since tw, -¢ isof @ e(GG o) = () - e(GG@,Of*) for all
a € G* and f € Aut(G) and (G, ®’), the KI'(¢ {1},1)-module S(G) is monomial. The stabilizer of
the one-dimensional subspace Ke(GG’q)) is equal to G* x Out(G)e and this group acts on ]Ke(GG’q,)

via ®. Thus, S(G) = Vi as KT'(¢,{1},1)-module and the proof is complete. U

9.3 Theorem Let I C F C B be subfunctors in Fi such that F/F’ is simple. Then there
exists a unique [G, ®] € B4 such that Eg ¢y C F and E.e) € F'. Moreover, Eg¢) + F' = F
and E(G,<I>) NF = J(G,<I>); and F/F/ = S(G,(p).
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Proof Since a(F") is a maximal subset of «(F') and both are closed, it follows from Theorem 8.8
and Remark 8.9 that a(F) ~ a(F’') = {[G, ®]} for a unique [G, ®] € BA. For any [H, ¥] € B4 one
has By y) C F and Ey gy € F' if and only if [H, V] € a(F) but [H, ¥] ¢ o(F’). Thus, the first
condition is equivalent to [H, ¥] = [G,®]. Further, we have F' C F' + E(g,¢y C F which implies
F'+Eg,e) = F,since I'/F'is simple. Thus, 0 # E ¢)/(Ec,e)F') = (Ege)+F')/F' = F/F',
and by Proposition 9.2 we obtain E(g ¢y N F' = J(g ) so that F/F' = E¢ ¢)/Jce) = SG,e)- U

10 The case A < K*

In this section we assume that A is a subgroup of the unit group of a field K of characteristic 0.
Then the assumptions on A and K from the beginnings of Sections 3-9 are satisfied. This special
case has been used for instance in the theory of canonical induction formulas, see [Bo98]. This
assumption was also used in [Ba04] and [CY19]. By double duality it allows to consider pairs
(G, gO(@Q)) for a normal subgroup O(G) of G instead of pairs (G,®) with & € Hom(G*,K*).
This section makes this translation precise and also translates previously defined features for pairs
(G, @) to features for pairs (G, gO(G)).

For any finite group G we have a homomorphism
(g: G — Hom(G*,K*), grreg,, withey(d):=o(g),

for ¢ € G*. Note that (g is functorial in G, i.e., if f: G — H is a group homomorphism then
Ch o f =Hom(f*,K*)o(g. We set

04(G) = O(G) :=ker((q) = [ ker(¢),
peG*

which is a normal subgroup of G containing the commutator subgroup [G,G] of G. Thus, we
obtain an injective homomorphism (¢ : G/O(G) — Hom(G*,K*).

10.1 Proposition Let G be a finite group.
(a) The homomorphism (¢ is surjective and (g: G/O(G)

~
(b) The subgroup O(G) is the smallest subgroup [G,G] < M
of order exp(G/M).

(¢) For any normal subgroup N of G one has O(G/N) = O(G)N/N.

Hom(G*,K*) is an isomorphism.
< G such that A has an element

Proof (a) Applying the functoriality with respect to the natural epimorphism f: G — G/[G, G|,
and using that f* is an isomorphism, it suffices to show the statement when G is abelian. Since
Hom(—*,K*) preserves direct products of abelian groups, we are reduced to the case that G is
cyclic. Using again the functoriality with respect to the natural epimorphism onto the largest
quotient of G' whose order occurs as an element order in A, we are reduced to the case that G is
cyclic of order n and A has an element of order n. In this case it is easy to see that (¢ is injective
and that G and Hom(G*,K*) have the same order.

(b) First note that if M; and M have the stated property, then also M7 N My has this property.
In fact, G/(M; N M) is isomorphic to a subgroup of G/M; x G/Ms, whose exponent is equal to
the order of an element in A. Here we use that if elements a and b in A have orders k& and [
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respectively, then A has an element whose order is the least common multiple of k and [. Thus,
there exists a smallest subgroup M with the stated property. Clearly, ker(¢) has the property for
every ¢ € G*. Therefore, also O(G) has the desired property. Conversely, if M has the property,
then by writing G/M as a direct product of n cyclic groups whose orders are achieved as element
order in A, it is easy to construct elements ¢1,. .., ¢, € G* such that ()}, ker(¢;) = M, implying
that O(G) < M.

(c) Since the exponent of G/O(G) is equal to the order of an element of A also the exponent
of (G/N)/(O(G)N/N) = G/(O(G)N) is equal to the order of an element of A. Thus, O(G/N) <
O(G)N/N. Conversely,

O(G) = [ ker(¢) < [ ker(¢),
PeEG* PeEG™
¢|n=1

and taking images in G/N yields the reverse inclusion. U

For any finite group G, Proposition 10.1(a) yields a bijection between the set of pairs of the
form (G, ®), with ® € Hom(G*,K*) and the set of pairs (G,gO(G)) with gO(G) € G/O(G).
More precisely, we identify (G, gO(G)) with (G,e4). The following proposition translates various
relevant features of pairs (G, ®) to features of the corresponding pairs (G, gO(G)). The proofs are
straightforward and left to the reader.

10.2 Proposition Let G and H be finite groups.

(a) Let g € G and h € H. Then (G,gO(G)) = (H,hO(H)) if and only if there exists an
isomorphism f: G — H such that f(g)O(H) = hO(H).

(b) Let N be a normal subgroup of G, let g € G, and set ® :=¢,. Then Oy = e4p.

(c) Let g € G and h € H. Then (H,¢p,) < (G,¢eg4) if and only if there exists a normal subgroup
N of G and an isomorphism f: H = G /N with f(h) € gO(G)N.
(d) Let K < G and g € G. Then e4|x1 =1 if and only if g € KO(G).
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