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Abstract

We show that functorial equivalences can offer new insight into the blockwise Galois Alperin
weight conjecture (BGAWC). Inspired by Knörr and Robinson’s work, we first formulate the
BGAWC in terms of alternating sums indexed by chains of p-subgroups, and we also give
a functorial reformulation in the Grothendieck group of diagonal p-permutation functors.
We prove that these formulations are equivalent. We further show that if a functorial
equivalence between a block with abelian defect group and its Brauer correspondent descends
to the minimal field of the block, then the BGAWC holds for that block. Finally, we prove
that Galois conjugate blocks are functorially equivalent over an algebraically closed field of
characteristic zero.
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1. Introduction

Recently, a substantial amount of literature has been devoted to refinements of the clas-
sical local-global counting conjectures taking Galois automorphisms into account. Examples
include the Navarro/Galois Alperin–McKay conjecture [13, Conjecture B], and the block-
wise Navarro/Galois Alperin weight conjecture (see [8, Conjecture 2]). In [3], Bouc and
Yılmaz introduced the notion of functorial equivalences between blocks. Functorial equiv-
alences have already proved useful in the study of several problems in the block theory of
finite groups. For example, in [3, Theorem 10.6], Bouc and Yılmaz investigated the Dono-
van conjecture from the point of view of functorial equivalences, while in [1], Boltje, Bouc
and Yılmaz applied the same perspective to Alperin’s weight conjecture. In this paper, we
show that functorial equivalences may also shed light on the blockwise Galois Alperin weight
conjecture (BGAWC) in several ways. To be more precise, we first fix some notation:

Email addresses: xinhuang@mails.ccnu.edu.cn (Xin Huang), d.yilmaz@bilkent.edu.tr (Deniz
Yılmaz)
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Notation 1.1. Throughout this paper p is a prime, Fp denotes a fixed algebraic closure of
Fp, and Γ := Gal(Fp/Fp). Let G be a group. We denote by exp(G) the smallest positive
integer n (possibly n = +∞) such that gn = 1 for all g ∈ G. If X is a left G-set, the stabiliser
of an element x ∈ X is denoted by Gx. For any subgroup H of G, XH denotes the set of
fixed points of H on X, that is, XH = {x ∈ X | hx = x, ∀ h ∈ H}. By [G\X] we denote a
set of representatives of the G-orbits of X. We denote by FG the set of p-subgroups of G.
For any field k of characteristic p and any P ∈ FG, we denote by brkGP (or brP ) the P -Brauer
homomorphism kG → kCG(P ) sending

∑
g∈G αgg to

∑
g∈CG(P ) αgg, where αg ∈ k. A block

of kG is a central primitive idempotent b of kG. For any positive integer n, we denote by
np the p-part of n and by np′ the p′-part of n. Unless otherwise specified, all modules are
left modules.

Let G be a finite group and b a central idempotent of FpG; we use the convention that 0
is a central idempotent. Let IBr(G, b) be the set of characters of simple FpGb-modules, and
W(G, b) the set of characters of simple projective FpGb-modules; we use the convention that
IBr(G, 0) = ∅ = W(G, 0). The stabiliser Γb of b in Γ acts naturally on both sets IBr(G, b)
and W(G, b); see Notation 2.1 below. The BGAWC can be stated as follows:

Conjecture 1.2 ([13],[14]; cf. [8, Conjecture 2]). Let G be a finite group and b a block of
FpG. Then there exists a bijection

IBr(G, b)→
⊔

P∈[G\FG]

W(NG(P )/P, b̄P )

commuting with the action of Γb, where b̄P is the image in Fp[NG(P )/P ] of bP = br
FpG
P (b),

regarded as a sum of blocks of Fp[NG(P )/P ].

See [14, 8, 5, 6, 7] for some recent results on Conjecture 1.2, and see Proposition 2.4
below for further equivalent reformulations of Conjecture 1.2. In [11], Knörr and Robinson
reformulated the blockwise Alperin weight conjecture (BAWC) in terms of alternating sums
indexed by chains of p-subgroups. Their reformulation led to a wide range of more precise
conjectures, including Dade’s ordinary and projective conjectures [12, Conjecture 6.12.9] and
Robinson’s conjecture [12, Conjecture 6.12.10]. Knörr and Robinson’s reformulation also
suggests the possibility of a structural explanation for the BAWC; see the beginning of [12,
Section 10.7] for an exposition. For this reason, it may be useful to reformulate Conjecture
1.2 in terms of alternating sums indexed by chains of p-subgroups as well. Again, we need
some notation:

Notation 1.3. Let G be a finite group and b a block of FpG. Denote by PG the set of
strictly ascending chains σ = (1 = P0 < P1 < · · · < Pn) of p-subgroups of G, and by NG
the subset of PG consisting of those chains σ such that every Pi is normal in the maximal
term Pn. Denote by Gσ the stabiliser in G of σ; we have Gσ = ∩ni=0NG(Pi). For any

σ = (1 = P0 < P1 < · · · < Pn) ∈ PG, we denote |σ| := n and denote bσ := br
FpG
Pn

(b). Since

br
FpG
Pn

commutes with the action of NG(Pn), hence the action of Gσ. It follows that bσ is an

idempotent in Z(FpGσ), possibly 0.
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We now provide a reformulation of Conjecture 1.2 in terms of alternating sums - a
refinement of Knörr and Robinson’s reformulation of the original BAWC.

Theorem 1.4 (Galois refinement of [11, Theorem 3.8] or [12, Theorem 10.7.6]). The fol-
lowing statements are equivalent:

(i) For any finite group G and any block b of FpG, Conjecture 1.2 holds.

(ii) For any finite group G, any block of FpG with a nontrivial defect group, and any
subgroup T of Γb, we have ∑

τ∈[G\PG]

(−1)|τ ||IBr(Gτ , bτ )
T | = 0,

where bτ is defined as in Notation 1.3.

(iii) For any finite group G, any block of FpG with a nontrivial defect group, and any
subgroup T of Γb, we have ∑

τ∈[G\NG]

(−1)|τ ||IBr(Gτ , bτ )
T | = 0.

(iv) For any finite group G, any idempotent b of Z(FpG), and any subgroup T of Γb, we
have ∑

τ∈[G\NG]

(−1)|τ ||IBr(Gτ , bτ )
T | = |W(G, b)T |.

In particular, if b is a block of FpG of defect zero, then the right-hand side equals 1.

Theorem 1.4 will be proved in Section 2. We also introduce in Corollary 3.4 (ii) a func-
torial reformulation of the BGAWC, expressed in terms of diagonal p-permutation functors,
and we show that this reformulation is equivalent to the alternating sum version in Theorem
1.4 (ii). This provides the first indication of how functorial equivalences (see 3.1) may shed
light on Conjecture 1.2.

Remark 1.5. Similar to [12, Remark 10.7.2], our proof of Theorem 1.4 does not show that,
for a given block, the validity of one of the statements (i) or (ii) implies the validity of the
other. However, for a particular block, Theorem 1.4 (ii) holds if and only if Corollary 3.4
(ii) holds for that block.

Definition 1.6 (cf. [10, Definition 1.8]). Let G be a finite group and b an idempotent in
Z(FpG). Write b =

∑
g∈G αgg, where αg ∈ Fp. We denote by Fp[b] the smallest subfield of Fp

containing all the coefficients {αg | g ∈ G} and call it the minimal field of b. By definition,
for any subfield k of Fp containing Fp[b], we have Gal(k/Fp)b = Gal(k/Fp[b]).

For a second way in which functorial equivalences may offer insight into Conjecture 1.2,
we prove the following theorem:
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Theorem 1.7. Let R be a commutative ring with 1 containing Z as a unitary subring. Let
G and H be finite groups, and let b ∈ Z(FpG) and c ∈ Z(FpH) be idempotents. Assume
that Fp[b] = Fp[c] and denote this common field by k. Assume further that the k-pairs (G, b)
and (H, c) are functorially equivalent over R. Then there exists a bijection I : IBr(G, b) →
IBr(H, c) such that σI(ϕ) = I( σϕ) for all ϕ ∈ IBr(G, b) and all σ ∈ Γb = Gal(Fp/k).

As a corollary, we show that if the Galois-descent refinement of Broué’s conjecture holds
at the level of functorial equivalences, then Conjecture 1.2 follows.

Corollary 1.8. Let R be a commutative ring with 1 containing Z as a unitary subring. Let
G be a finite group, and let b a block of FpG with an abelian defect group P . Let c ∈ FpNG(P )
be the Brauer correspondent of b and set k = Fp[b] = Fp[c]. Assume that the k-pairs (G, b)
and (NG(P ), c) are functorially equivalent over R. Then Conjecture 1.2 holds for b.

Theorem 1.7 and Corollary 1.8 will be proved in Section 4 as applications of a more
general result (Theorem 4.2) for arbitrary algebras. Corollary 1.8 suggests that Galois
descent properties of functorial equivalences may play a role in verifying Conjecture 1.2. We
take a first step in this direction by showing that Galois conjugate blocks are functorially
equivalent. This result is expected to be useful in establishing Galois descent phenomena
for functorial equivalences.

Theorem 1.9. Let k be an algebraically closed field of characteristic p and F an algebraically
closed field of characteristic zero. Let (G, b) be a group-block pair over k and let σ ∈ Γ =
Gal(k/Fp). Then the pairs (G, b) and (G, σ(b)) are functorially equivalent over F.

Theorem 1.9 will be proved in Section 5 using the multiplicity formula [3, Theorem 8.22
(b)] for simple diagonal p-permutation functors in a block functor.

2. The BGAWC and alternating sums

Notation 2.1. (i) Let k ⊆ k′ be an extension of fields. Let G be a finite group and V a
finite-dimensional k′G-module. The character of V is the class function χV : G→ k′, sending
g ∈ G to the trace tr(ρ(g)) of the linear isomorphism ρ(g) of V defined by ρ(g)(v) = gv for
all v ∈ V . For σ ∈ Gal(k′/k), we denote by σV the k′G-module which is equal to V as a
module over the subring kG of k′G such that x acts on σV as σ−1(x) for all x ∈ k′. For a
character χ of G over k′, denote by σχ : G→ k′ the character such that σχ(g) = σ(χ(g)) for
all g ∈ G. It is well known (and easy to check) that the character of σV is σχ.

(ii) A map χ : G→ k is called a(n) (irreducible) character of G over k if χ is the character
of some finite-dimensional (simple) kG-module. For b an idempotent in Z(kG), we denote
by Irr(kGb) the set of irreducible characters of G afforded by simple kGb-modules. We
adopt the convention that for b = 0, Irr(kGb) = ∅, and a sum indexed by the empty set is
zero. We denote by W(kGb) the set of characters of simple projective kGb-modules; we can
identify W(kGb) with the set of defect zero blocks occurring in a primitive decomposition
of b in Z(kG). Let b be an idempotent in Z(FbG), we denote Irr(FpGb) (resp. W(FpGb)) by
IBr(G, b) (resp. W(G, b)). Now we see that Γ acts on the set Irr(FpG). Let Γb := {σ ∈ Γ |
σ(b) = b}. Then Γb acts on the sets IBr(G, b) and W(G, b).
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Remark 2.2. Let t be a positive integer which is not divisible by p, and let ξ ∈ Fp be a
primitive t-th root of unity. Denote by Γt the group Gal(Fp[ω]/Fp). Clearly Γt is independent
of the choice of ξ. By elementary field theory, if t′ is another positive integer which is not
divisible p and which is divisible by t, then the restriction map Γt′ → Γt is surjective.
Moreover, it is well known (and easy to prove by using the Zorn lemma) that the restriction
map Γ→ Γt is surjective.

The following lemma is a useful criterion for permutation isomorphisms:

Lemma 2.3 ([9, Lemma 13.23]). Let S be a (possibly infinite) group and let X, Y be two
finite S-sets. Suppose that for every subgroup T of S, we have |XT | = |Y T |. Then X and
Y are isomorphic as S-sets.

By Lemma 2.3, we easily obtain several equivalent reformulations of Conjecture 1.2:

Proposition 2.4. Let G be a finite group and b a block of FpG. Then the following are
equivalent:

(i) Conjecture 1.2 holds for the block b.

(ii) There exists a bijection

IBr(G, b)→
⊔

P∈[G\FG]

W(NG(P )/P, b̄P )

commuting with the action of (Γt)b, where t = exp(G)p′.

(iii) For any subgroup T of Γb, we have

|IBr(G, b)T | =
∑

P∈[G\FG]

|W(NG(P )/P, b̄P )T |.

(iv) For any subgroup T of (Γt)b where t = exp(G)p′, we have

|IBr(G, b)T | =
∑

P∈[G\FG]

|W(NG(P )/P, b̄P )T |.

Proof. Let ω be a primitive t-th root of unity in Fp and let k := Fp[ω]. Since k is a splitting
field for all subgroups of G, the values of any irreducible character of G over Fp are contained
in k. Let σ ∈ Γb and let σ̃ be the image of σ under the restriction map Γb → (Γt)b. Then
we have the following commutative diagrams:

IBr(G, b)

σ

��

IBr(kGb)

σ̃
��

IBr(G, b) IBr(kGb)

W(NG(P )/P, b̄P )

σ
��

W(k(NG(P )/P )b̄P )

σ̃
��

W(NG(P )/P, b̄P ) W(k(NG(P )/P )b̄P )

where P ∈ [G\FG]. This proves the equivalence of (i) and (ii). The equivalence of (i) and
(iii) and the equivalence of (ii) and (iv) follow from Lemma 2.3.
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In the rest of this section we will use Notation 1.3.

Lemma 2.5 (Galois refinement of [12, Lemma 10.7.4]). Let G be a finite group, n a positive
integer and σ = (1 = P0 < P1 < · · · < Pn) a chain in NG. Set P = P1. Let b be an

idempotent in Z(FpG) such that br
FpG
P (b) 6= 0 and denote by c the image of br

FpG
P (b) in

Fp[NG(P )/P ]. Set σ̄ = (1 < P2/P < · · · < Pn/P ) ∈ PNG(P )/P .

(i) Write NP = NG(P )/P . Then Gσ/P = (NP )σ̄.

(ii) The image of bσ = br
FpG
Pn

(b) in Fp[NG(Pn)/P ] is equal to cσ̄ = br
Fp[NG(P )/P ]

Pn/P
(c). In

particular, for any subgroup T of Γb, we have

|IBr(Gσ, bσ)T | = |IBr(Gσ/P, cσ̄)T |.

Proof. Statement (i) is a trivial exercise. Except for the last equality, everything in statement
(ii) is proved in the proof of [12, Lemma 10.7.4]. By the proof of [12, Lemma 10.7.4], the
inflation map IBr(Gσ/P ) → IBr(Gσ) induces a bijection IBr(Gσ/P, cσ̄) → IBr(Gσ, bσ). By
definition, one easily sees that this bijection commutes with the action of Γb. Now by Lemma
2.3 we obtain the desired equality |IBr(Gσ, bσ)T | = |IBr(Gσ/P, cσ̄)T |.

Lemma 2.6 (Galois refinement of [11, 3.6, 3.7] or [12, Lemma 10.7.5]). Let G be a finite
group and b a block of FpG. For P a nontrivial p-subgroup of G, set NP = NG(P )/P and

denote by cP the image of br
FpG
P (b) in FpNP . For any subgroup T of Γb, we have∑
1 6=σ∈[G\NG]

(−1)|σ|−1|IBr(Gσ, bσ)T |

=
∑

16=P∈[G\FG]

|IBr(NP , cP )T | −
∑

16=τ∈[NP \NNP ]

(−1)|τ |−1|IBr((NP )τ , (cP )τ )
T |

 .

If b has defect zero, then this sum is zero.

Proof. We proceed by an argument analogous to that in the proof [12, Lemma 10.7.5]. The
chain of length 1 in the sum on the left side yields the summand

∑
1 6=P∈[G\FG] |IBr(NG(P ), bP )T |,

where bP = brP (b), regarded as a (possibly empty) sum of blocks of FpNG(P ). Since the
kernel of the canonical algebra homomorphism FpNG(P )→ FpNP is in the Jacobson radical
of FpNG(P ), the inflation map IBr(NP , cP ) → IBr(NG(P ), bP ) is a bijection. By definition
one easily sees that this bijection commutes with the action of Γb. Hence by Lemma 2.3, we
have ∑

16=P∈[G\FG]

|IBr(NG(P ), bP )T | =
∑

1 6=P∈[G\FG]

|IBr(NP , cP )T |.

The chains σ = (1 = P0 < P1 < · · · < P|σ|) with |σ| > 1 in the sum of the left side are
partitioned according to their second term P1. Set σ̄ = 1 < P2/P1 < · · · < P|σ|/P1. By [12,
Lemma 10.7.3], two chains σ and σ′ in NG with the same second term (say P1 = P ′1 = P )
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are G-conjugate if and only if σ̄ and σ̄′ are NP -conjugate. In that process (i.e. partition
according to the second term and then passage from σ to σ̄), chains are shortened by one
term. So we have to adjust the signs, accounting for the minus signs in front of the sums∑

τ∈[NP \NNP ](−1)|τ |−1|IBr((NP )τ , (cP )τ )
T |. Finally, the fact that |IBr((NP )τ , (cP )τ )

T | shows

up on the right side follows from Lemma 2.5. If b has defect zero, then brP (b) = 0 for any
nontrivial p-subgroup P of G, whence the last statement.

Proof of Theorem 1.4. We proceed by an argument analogous to that in the proof [12, The-
orem 10.7.6]. The equivalence of (ii) and (iii) follows from [11, Proposition 3.3] or [12,
Proposition 8.13.13]. If b is a block of defect zero, then IBr(G, b) = W(G, b), and hence
|IBr(G, b)T | = |W(G, b)T |. By Lemma 2.6, the sum

∑
16=τ∈[G\NG](−1)|τ ||IBr(Gτ , bτ )

T | is 0,
and hence ∑

τ∈[G\NG]

(−1)|τ ||IBr(Gτ , bτ )
T | = |IBr(G, b)T |.

So in this case, the equality in (iv) holds.
If b is a block of positive defect, then W(G, b) = ∅. Thus if b is an arbitrary idempotent

in Z(FpG), then |W(G, b)T | counts the number of defect zero blocks in a primitive decompo-
sition of b in Z(FpG) that are fixed by T . The equivalence of (iii) and (iv) is an immediate
consequence.

Suppose that (iv) holds. Let G be a finite group and b a block of FpG of positive
defect. Since (iv) holds, it follows that the left side in Lemma 2.6 in |IBr(G, b)T |. The right
side is, again by (iv), equal to

∑
16=P∈[G\FG] |W(NP , cP )T |, and this is the statement of a

reformulation of Conjecture 1.2 for the block b, see Proposition 2.4 (iii). Thus (iv) implies
(i).

Suppose that (i) holds. We show (iv) by induction on |G|. By the discussion in the first
two paragraphs, we may assume that b is a block of FpG with positive defect. Note that for
P a nontrivial p-subgroup of G, the group NP = NG(P )/P in Lemma 2.6 has order strictly
smaller that |G|. Thus by (iv) applied to the sum of blocks cP of FpNP , the right side in
Lemma 2.6 is equal to

∑
1 6=P∈[G\FG] |W(NP , cP )T |. But since Conjecture 1.2 is assumed to

hold, by Proposition 2.4 (iii),
∑

16=P∈[G\FG] |W(NP , cP )T | = |IBr(G, b)T |. Now the equality
in Lemma 2.6 becomes ∑

16=σ∈[G\NG]

(−1)|σ|−1|IBr(Gσ, bσ)T | = |IBr(G, b)T |,

and this shows that (iv) holds also for b.

3. Galois refinement of functorial Alperin weight conjecture

Let k be a field of characteristic p > 0, let F be an algebraically closed field of character-
istic zero and let R be a commutative ring with 1. Let G and H be finite groups. We first
recall the notions of diagonal p-permutation functors and functorial equivalences. We refer
the reader to [3] and [4] for more details. Note that in [3] and [4], the field k is assumed to
be algebraically closed; however, these notions can be defined over arbitrary field k.
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3.1. (i) By a group-idempotent pair over k, or simply a k-pair, we mean a pair (G, b) consist-
ing of a finite group G and a central idempotent b ∈ Z(kG). When b is a block idempotent,
such pairs are called group-block pairs in [1]. The notion of functorial equivalence was
originally defined for group-block pairs, but it extends naturally to group-idempotent pairs.

(ii) A D∆-pair is a pair (L, u) where L is a p-group and u ∈ Aut(L) is an automorphism
of order prime to p. We write L〈u〉 for the semidirect product Lo 〈u〉. If (M, v) is another
D∆-pair, then an isomorphism between the pairs (L, u) and (M, v) is a group isomorphism
L〈u〉 → M〈v〉 that sends u to an element conjugate to v. We denote by Aut(L, u) the
automorphism group of the pair (L, u) and by Out(L, u) the group of outer automorphisms
Aut(L, u)/Inn(L〈u〉) of (L, u); see [3, Notation 6.8 and Lemma 6.10].

(iii) Let b ∈ Z(kG) and c ∈ Z(kH) be central idempotents. A p-permutation (kGb, kHb)-
bimodule is called diagonal if its indecomposable direct summands have twisted diagonal
vertices as subgroups of G × H. We denote by T∆(kGb, kHc) the Grothendieck group of
diagonal p-permutation (kGb, kHc)-bimodules with respect to split short exact sequences,
and we set

RT∆(kGb, kHc) := R⊗Z T
∆(kGb, kHc);

If b = 1, we denote RT∆(kGb, kHc) by RT∆(G, kHc).
We denote by Rpp∆

k the category whose objects are finite groups and whose morphisms
from G to H are given by RT∆(kH, kG). The composition is induced from the tensor
product of bimodules. An R-linear functor from Rpp∆

k to the category of R-modules is
called a diagonal p-permutation functor over R. The category of diagonal p-permutation
functors over R is denoted by F∆

Rppk
; it is an abelian category.

(iv) We denote
RT∆

(G,b) := RT∆(−, kGb),
and we say that the k-pairs (G, b) and (H, c) are functorially equivalent over R, if the
diagonal p-permutation functors RT∆

(G,b) and RT∆
(H,c) are isomorphic. By Yoneda’s Lemma,

this is equivalent to the existence of elements η ∈ RT∆(kGb, kHc) and ω ∈ RT∆(kHc, kGb)
such that

η ·H ω = [kGb] in RT∆(kGb, kGb) and ω ·G η = [kHc] in RT∆(kHc, kHc) ,

where ·G and ·H denote the composition in the category Rpp∆
k ; see [3, Lemma 10.2].

(v) If k is algebraically closed, then, by [3, Corollary 6.15], the category F∆
Fppk of diago-

nal p-permutation functors over F is semisimple. Moreover, the simple functors SL,u,V are
parametrized by the isomorphism classes of triples (L, u, V ), where (L, u) is a D∆-pair and
V is a simple FOut(L, u)-module.

(vi) We denote by Proj(kHc, kGb) the Grothendieck group of projective (kHc, kGb)-
bimodules, and by RProj(−, kG) the diagonal p-permutation functor sending a finite group
H to

RProj(kH, kG) = R⊗Z Proj(kH, kG).

Note that when R = F and k is algebraically closed, by [2, Lemma 3.5], one has

FProj(−, kG) = |IBr(G)| · S1,1,F
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in the Grothendieck group K0(F∆
Fppk) of diagonal p-permutation functors.

Notation 3.2. Let b ∈ Z(Fp(G)) be a central idempotent and let T ≤ Γb. Let PIM(G, b)T

denote the set of T -fixed projective indecomposable right FpGb-modules and let FProj(kGb)T

denote the F-span of PIM(G, b)T . We denote by FProj(−, kGb)T the subfunctor of FT∆
(G,b)

generated by the set PIM(G, b)T viewed as a subset of

FT∆
(G,b)(1) = FT∆(1, kGb) = FProj(1, kGb) ∼= FProj(kGb).

In other words, for any finite group H, we have

FProj(H, kGb)T =
∑

P∈PIM(G,b)T

{X ⊗k P ∈ FT∆(kH, kGb) | X ∈ FT∆(kH,1)} .

Lemma 3.3. Let b be a central idempotent of FpG and let T ≤ Γb be a subgroup. One has

FProj(−, kGb)T = |IBr(G, b)T | · S1,1,F

in K0(F∆
Fppk).

Proof. By Lemma 3.5 in [2], one has FProj(−, kG) = |IBr(G)|·S1,1,F. Since FProj(−, kGb)T ⊆
FProj(−, kGb) ⊆ FProj(−, kG), it follows that FProj(−, kGb)T and FProj(−, kG) are also
multiples of S1,1,F in K0(F∆

Fppk). Since the F-dimension of FProj(1, kGb)T is equal to
|PIM(G, b)T | = |IBr(G, b)T |, the result follows.

Corollary 3.4. The following statements are equivalent:

(i) For any finite group G and any block b of FpG, Conjecture 1.2 holds.

(ii) For any finite group G, any block of FpG with a nontrivial defect group, and any
subgroup T of Γb, we have∑

τ∈[G\PG]

(−1)|τ |FProj(−, kGτbτ )
T = 0 in K0(F∆

Fppk),

where Gτ and bτ are defined as in Notation 1.3.

Proof. This follows easily from Lemma 3.3 and Theorem 1.4.

Remark 3.5. For any finite group G and a block idempotent b of FpG, Theorem 3.5 in [1]
implies that, in K0(F∆

Fppk),∑
τ∈[G\PG]

(−1)|τ |FT∆(−, kGτbτ ) =
∑

τ∈[G\PG]

(−1)|τ |FProj(−, kGτbτ ) .

Therefore, Corollary 3.4 can be seen as a Galois refinement of Theorem 3.5 in [1].
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4. Galois automorphisms and bijections between simple modules

4.1. (i) Let k be a field and let R be a commutative ring with 1. Let A, B and C be finite-
dimensional k-algebras. For any A-module M , denote by [M ] the isomorphism class of M .
Denote by S(A) the set of isomorphism classes of simple A-modules. Denote by R(A) the
Grothendieck group of finite-dimensional A-modules with respect to short exact sequences.
In other words, R(A) is a free Z-module with a Z-basis S(A). For any finite-dimensional
A-module M , we have [M ] = [S1]+ · · ·+[Sn] in R(A), where S1, · · · , Sn are the composition
factors of M (repeated according their multiplicities). We set R(A,B) := R(A ⊗k Bop).
Tensor products of bimodules induce a Z-bilinear map − ·B − : R(A,B) × R(B,C) →
R(A,C), which extends to an R-bilinear map (denoted abusively by the same notation)
− ·B − : R⊗Z R(A,B)×R⊗Z R(B,C)→ R⊗Z R(A,C).

(ii) Let k′ be an extension of k and let A′ := k′ ⊗k A. For an A′-module U ′ and a
σ ∈ Gal(k′/k), denote by σU ′ the A′-module which is equal to U ′ as a module over the
subalgebra 1⊗A of A′, such that x⊗a acts on U ′ as σ−1(x)⊗a for all a ∈ A and x ∈ k′. We
say that U ′ descends to k, if there is an A-module U such that U ′ ∼= k′⊗k U . In this special
case, for any σ ∈ Gal(k′/k), the map sending x ⊗ u to σ−1(x) ⊗ u induces an isomorphism
k′⊗kU ∼= σ(k′⊗kU), where u ∈ U and x ∈ k′. The action of Gal(k′/k) on A′-modules makes
R(A′) into a ZGal(k′/k)-module, hence makes R ⊗Z R(A′) into an RGal(k′/k)-module. It
is clear that if U ′ is simple, then σU ′ is simple. Hence S(A′) is a Gal(k′/k)-stable Z-basis
(resp. R-basis) of R(A′) (resp. R⊗Z R(A′)).

(iii) Let η be an element in R ⊗Z R(A,B). Then η can be uniquely written as η =
α1[M1] + · · · + αs[Ms], where Mi are finite-dimensional simple A-B-bimodules and αi ∈ R.
In particular, η induces an R-linear map

Φη : R⊗Z R(B)→ R⊗Z R(A)

[M ] 7→ η ·B [M ] = α1[M1 ⊗kH M ] + · · ·+ αn[Mn ⊗kH M ]

where M is any finite-dimensional kH-module. Assume that there are elements η ∈ R ⊗Z
R(A,B) and ω ∈ R⊗Z R(B,A) such that

η ·B ω = [A] in R⊗Z R(A,A) and ω ·A η = [B] in R⊗Z R(B,B) .

Then Φη and Φω are mutually inverse R-linear isomorphisms between R⊗ZR(A) and R⊗Z
R(B).

Theorem 4.2. Let k ⊆ k′ be an extension of fields and let R be a commutative ring with
1 containing Z as a unitary subring. Let A and B be finite-dimensional k-algebras. Let
A′ := k′ ⊗k A and B′ := k′ ⊗k B. Assume that Gal(k′/k) is cyclic and that there are
elements η ∈ R⊗Z R(A,B) and ω ∈ R⊗Z R(B,A) such that

η ·B ω = [A] in R⊗Z R(A,A) and ω ·A η = [B] in R⊗Z R(B,B) .

Then there is a bijection S(A′)→ S(B′) commuting with the action of Gal(k′/k).
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Proof. The proof is inspired by the proof of [8, Theorem 1]. Write η = α1[M1]+ · · ·+αs[Ms]
and ω = β1[N1] + · · · + βt[Nt], where Mi (resp. Nj) are finite-dimensional simple A-B-
bimodules (resp. B-A-bimodules) and αi, βj ∈ R. Let

η′ = α1[k′ ⊗k M1] + · · ·+ αs[k
′ ⊗k Ms] ∈ R⊗Z R(A′, B′)

and
ω′ = β1[k′ ⊗k N1] + · · ·+ βt[k

′ ⊗k Nt] ∈ R⊗Z R(A′, B′).

Then we have

η′ ·B′ ω′ = [A′] in R⊗Z R(A′, A′) and ω′ ·A′ η′ = [B′] in R⊗Z (B′, B′) .

Hence by 4.1 (iii), Φη′ and Φω′ are mutually inverse R-linear isomorphisms between R ⊗Z
R(A′) and R⊗Z R(B′).

Recall from 4.1 (ii) that R ⊗Z R(A′) and R ⊗Z R(B′) are RGal(k′/k)-modules. Again
by 4.1 (ii), we have ση′ = η′ and σω′ = ω′. Now we can easily check that

Φη′ : R⊗Z R(B′)→ R⊗Z R(A′)

is an isomorphism of RGal(k′/k)-modules. Indeed, for any σ ∈ Gal(k′/k) and any [M ] ∈
R(B′) with M being a finite-dimensional B′-module, one has

σ(Φη′([M ])) = σ(η′ ·B′ [M ]) = ση′ ·B′
σ[M ] = η′ ·B σ[M ] = Φη′(

σ[M ]).

Since S(B′) is a Gal(k′/k)-stable R-basis of R⊗ZR(B′), its image Φη′(S(B′)) is a Gal(k′/k)-
stable R-basis of R⊗ZR(A′). On the other hand, S(A′) is another Gal(k′/k)-stable R-basis
of R⊗Z R(A′). Since the character χ of the RGal(k′/k)-module R⊗ZR(A′) is independent
of the choice of an R-basis, we see that for any σ ∈ Gal(k′/k), we have

χ(σ) = |S(A′)〈σ〉| = |Φη′(S(B′))〈σ〉|.

Since Gal(k′/k) is a cyclic group, by Lemma 2.3, S(A′) and Φη′(S(B′)) are isomorphic as
Gal(k′/k)-sets. Hence S(A′) and S(B′) are isomorphic as Gal(k′/k)-sets.

Proof of Theorem 1.7. Let t = exp(G × H)p′ , ξ ∈ Fp a primitive t-th root of unity and
k′ = Fp[ξ]. Since k′ is a splitting field for both G and H, the values of any irreducible
character of G (resp. H) over Fp are contained in k′, hence we have IBr(G, b) = Irr(k′Gb)
and IBr(H, c) = Irr(k′Hc). Let Γt = Gal(k′/Fp). Then (Γt)b = Gal(k′/k) = (Γt)c is a
cyclic group. Let σ ∈ Γb = Gal(Fp/k) and σ̃ be the image of σ under the restriction map
Γb → (Γt)b. By Notation 2.1 (i) we have the following commutative diagram:

S(FpGb) //

σ
��

IBr(G, b)

σ

��

oo IBr(k′Gb)

σ̃

��

// S(k′Gb)oo

σ̃

��

S(FpGb) // IBr(G, b)oo IBr(k′Gb) // S(k′Gb)oo
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Hence it suffices to show that S(k′Gb) and S(k′Hc) are isomorphic as Gal(k′/k)-sets. By
3.1 (iv), there are elements η ∈ RT∆(kGb, kHc) and ω ∈ RT∆(kHc, kGb) such that

η ·H ω = [kGb] in RT∆(kGb, kGb) and ω ·G η = [kHc] in RT∆(kHc, kHc) .

Hence we also have

η ·kHc ω = [kGb] in R⊗Z R(kGb, kGb) and ω ·kGb η = [kHc] in R⊗Z R(kHc, kHc) .

Now the statement follows from Theorem 4.2.

Proof of Corollary 1.8. Since P is abelian, it is well known that⊔
Q∈[G\FG]

W(NG(Q)/Q, b̄Q) =W((NG(P )/P ), b̄P ),

and the inflation map W((NG(P )/P ), b̄P ) → IBr(NG(P ), c) is a bijection. By definition,
one easily sees that this bijection is commutative with the action of Γb. Now the statement
follows from Theorem 1.7.

5. Galois conjugate blocks are functorially equivalent

Let k denote an algebraically closed field of characteristic p and F denote an algebraically
closed field of characteristic zero. Recall that the category F∆

Fppk of diagonal p-permutation
functors over F is semisimple, and the simple functors SL,u,V are parametrized by the iso-
morphism classes of triples (L, u, V ) where (L, u) is a D∆-pair and V is a simple FOut(L, u)-
module.

Let (G, b) and (H, c) be group-block pairs over k. Since the category F∆
Fppk is semisimple,

the functors FT∆
(G,b) and FT∆

(H,c) are direct sums of simple functors. It follows that the pairs

(G, b) and (H, c) are functorially equivalent over F if and only if the multiplicities of the
simple functor SL,u,V in FT∆

(G,b) and FT∆
(H,c) are the same. We now recall a formula for these

multiplicities.
Let (G, b) be a group-block pair over k and let (D, eD) be a maximal (G, b)-Brauer

pair. For any subgroup P ≤ D, let eP be the unique block idempotent of kCG(P ) with
(P, eP ) ≤ (D, eD). Let F be the fusion system of (G, b) with respect to (D, eD) and let [F ]
denote a set of isomorphism classes of objects of F .

Let (L, u) be a D∆-pair. For P ∈ F , we denote by P(P,eP )(L, u) the set of group iso-
morphisms π : L→ P with π ◦ u ◦ π−1 ∈ AutF(P ). This is an (NG(P, eP ),Aut(L, u))-biset
via

g · π · ϕ = igπϕ

for g ∈ NG(P, eP ), π ∈ P(P,eP )(L, u) and ϕ ∈ Aut(L, u). We denote by [P(P,eP )(L, u)] a set
of representatives of NG(P, eP )× Aut(L, u)-orbits of P(P,eP )(L, u).

For π ∈ [P(P,eP )(L, u)], the stabilizer in Aut(L, u) of the NG(P, eP )-orbit of π is denoted
by Aut(L, u)(P,eP ,π). One has

Aut(L, u)(P,eP ,π) = {ϕ ∈ Aut(L, u) | πϕπ−1 ∈ AutF(P )} .

12



Moreover, for π ∈ [P(P,eP )(L, u)], we denote by PIM(kCG(P )eP , u, π) a set of isomorphism
classes of projective indecomposable kCG(P )eP -modules that are fixed by πuπ−1. This is
an Aut(L, u)(P,eP ,π)-set via U · ϕ = gU where g ∈ NG(P, eP ) with igπϕ = π. We denote by

FProj(kCG(P )eP , u, π) the F-span of PIM(kCG(P )eP , u, π).

Theorem 5.1 ([3, Theorem 8.22(b)]). The multiplicity of a simple diagonal p-permutation
functor SL,u,V in the functor FT∆

(G,b) is equal to the F-dimension of⊕
P∈[F ]

⊕
π∈[P(P,eP )(L,u)]

FProj(kCG(P )eP , u, π)⊗FAut(L,u)
(P,eP ,π)

V .

Let Fp denote the prime subfield of k and let Γ = Gal(k/Fp) denote the Galois group.
Note that Γ acts on kG and on Z(kG) via Fp-algebra automorphisms by applying σ ∈ Γ to
the coefficients of the elements of kG. We say that the group-block pairs (G, b) and (G, b′)
are Γ-conjugate, if b′ = σ(b) for some σ ∈ Γ.

Let σ : k → k be a field automorphism. It induces a ring isomorphism σ : kG → kG
still denoted by σ. Note that the map σ permutes the blocks of kG. Since the action of
Γ commutes with the action of G and Brauer morphisms, it is easy to prove that Galois
conjugate blocks have the same defect groups and the same fusion systems:

Lemma 5.2 (cf. [12, Lemma 9.6.5]). Let (G, b) be a group-block pair over k, let (P, e) and
(Q, f) be Brauer pairs on kG and let γ ∈ Γ.

(i) (P, e) is a (G, b)-Brauer pair if and only (P, σ(e)) is a (G, σ(b))-Brauer pair.

(ii) We have (Q, f) ≤ (P, e) if and only if (Q, σ(f)) ≤ (P, σ(e)).

(iii) (P, e) is a maximal (G, b)-Brauer pair if and only if (P, σ(e)) is a maximal (G, σ(b))-
Brauer pair. In this case, one has the equality F(P,e)(G, b) = F(P,σ(e))(G, σ(b)) of fusion
systems.

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. By the arguments above, it suffices to prove that the multiplicities
of the simple diagonal p-permutation functors in FT∆

(G,b) and FT∆
(G,σ(b)) are the same. We use

the formula in Theorem 5.1.
Let SL,u,V be a simple diagonal p-permutation functor over F. Let (D, eD) be a maximal

(G, b)-Brauer pair and, for each P ≤ D, let eP be the unique block of kCG(P ) with (P, eP ) ≤
(D, eD). Let F denote the fusion system of (G, b) with respect to (D, eD). By Lemma 5.2,
F is also the fusion system of the pair (G, σ(b)) with respect to the maximal (G, σ(b))-pair
(D, σ(eD)).

Since F is a common fusion system, for every P ∈ [F ], one has

P(P,eP )(L, u) = P(P,σ(eP ))(L, u) .

Since also NG(P, eP ) = NG(P, σ(eP )), we may choose representatives so that[
P(P,eP )(L, u)

]
=
[
P(P,σ(eP ))(L, u)

]
.
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Now fix π ∈
[
P(P,eP )(L, u)

]
. Then πuπ−1 = ig for some g ∈ NG(P, eP ) = NG(P, σ(eP )). A

projective indecomposable kCG(P )eP -module S is πuπ−1-fixed if and only if

gS ∼= S as kCG(P )eP -modules.

Applying σ to this isomorphism gives

σ( gS) ∼= σS as kCG(P )σ(eP )-modules.

Since σ( gS) = g( σS), it follows that the map S 7→ σS is a bijection between the sets
PIM(kCG(P )eP , u, π) and PIM(kCG(P )σ(eP ), u, π). This bijection induces an isomorphism
of F-vector spaces

FProj(kCG(P )eP , u, π) ∼= FProj(kCG(P )σ(eP ), u, π) .

Next, we show that this is an isomorphism of right FAut(L, u)(P,eP ,π)-modules. Since

Aut(L, u)(P,eP ,π) = Aut(L, u)(P,σ(eP ),π), Theorem 5.1 will then imply the result.

Let ϕ ∈ Aut(L, u)(P,eP ,π). Let g ∈ NG(P, eP ) = NG(P, σ(eP )) such that igπϕ = π. For

any U ∈ FProj(kCG(P )eP , u, π), one has

σ(U · ϕ) = σ( gU) = g( σU) = σU · ϕ .

Thus the isomorphism

FProj(kCG(P )eP , u, π) ∼= FProj(kCG(P )σ(eP ), u, π)

is an isomorphism of right FAut(L, u)(P,eP ,π)-modules, as desired.
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